| Curve name | 
$X_{193g}$ | 
| Index | 
$96$ | 
| Level | 
$8$ | 
| Genus | 
$0$ | 
| Does the subgroup contain $-I$? | 
No | 
| Generating matrices | 
$
\left[ \begin{matrix} 3 & 6 \\ 0 & 7 \end{matrix}\right],
\left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix}\right],
\left[ \begin{matrix} 5 & 2 \\ 0 & 7 \end{matrix}\right]$ | 
| Images in lower levels | 
 | 
| Meaning/Special name | 
 | 
| Chosen covering | 
$X_{193}$ | 
| Curves that $X_{193g}$ minimally covers  | 
 | 
| Curves that minimally cover $X_{193g}$ | 
 | 
| Curves that minimally cover $X_{193g}$ and have infinitely many rational 
points. | 
 | 
| Model | 
$\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is 
given by
\[y^2 = x^3 + A(t)x + B(t), \text{ where}\]
\[A(t) = -452984832t^{24} + 2264924160t^{22} - 4133486592t^{20} + 
3199205376t^{18} - 1215627264t^{16} + 1150156800t^{14} - 947994624t^{12} + 
71884800t^{10} - 4748544t^{8} + 781056t^{6} - 63072t^{4} + 2160t^{2} - 27\]
\[B(t) = 3710851743744t^{36} - 27831388078080t^{34} + 85581518340096t^{32} - 
137301514518528t^{30} + 112195283189760t^{28} - 10349797441536t^{26} - 
78714268286976t^{24} + 79884781092864t^{22} - 28937237299200t^{20} + 
3151132360704t^{18} - 1808577331200t^{16} + 312049926144t^{14} - 
19217350656t^{12} - 157925376t^{10} + 106997760t^{8} - 8183808t^{6} + 
318816t^{4} - 6480t^{2} + 54\]
 | 
| Info about rational points | 
| Comments on finding rational points | 
None | 
| Elliptic curve whose $2$-adic image is the subgroup | 
$y^2 + xy + y = x^3 + x^2 - 52431x - 2731947$, with conductor $1470$ | 
| Generic density of odd order reductions | 
$11/112$ |