Curve name | $X_{193n}$ | |||||||||
Index | $96$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 6 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | $X_1(2,8)$ | |||||||||
Chosen covering | $X_{193}$ | |||||||||
Curves that $X_{193n}$ minimally covers | ||||||||||
Curves that minimally cover $X_{193n}$ | ||||||||||
Curves that minimally cover $X_{193n}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -1769472t^{16} + 3538944t^{14} - 1327104t^{12} - 221184t^{10} - 1589760t^{8} - 13824t^{6} - 5184t^{4} + 864t^{2} - 27\] \[B(t) = 905969664t^{24} - 2717908992t^{22} + 2378170368t^{20} - 396361728t^{18} - 1985347584t^{16} + 1847328768t^{14} + 229146624t^{12} + 115458048t^{10} - 7755264t^{8} - 96768t^{6} + 36288t^{4} - 2592t^{2} + 54\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - 1070x + 7812$, with conductor $210$ | |||||||||
Generic density of odd order reductions | $1/28$ |