The modular curve $X_{219f}$

Curve name $X_{219f}$
Index $96$
Level $16$
Genus $0$
Does the subgroup contain $-I$? No
Generating matrices $ \left[ \begin{matrix} 3 & 3 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 8 & 3 \end{matrix}\right]$
Images in lower levels
LevelIndex of imageCorresponding curve
$2$ $3$ $X_{6}$
$4$ $12$ $X_{13f}$
$8$ $48$ $X_{85m}$
Meaning/Special name
Chosen covering $X_{219}$
Curves that $X_{219f}$ minimally covers
Curves that minimally cover $X_{219f}$
Curves that minimally cover $X_{219f}$ and have infinitely many rational points.
Model $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -46899t^{24} + 4536t^{23} - 99252t^{22} - 712584t^{21} - 141318t^{20} - 1824984t^{19} - 4402404t^{18} - 489240t^{17} - 19534365t^{16} + 6711984t^{15} - 45292392t^{14} + 6093360t^{13} - 53065044t^{12} - 6093360t^{11} - 45292392t^{10} - 6711984t^{9} - 19534365t^{8} + 489240t^{7} - 4402404t^{6} + 1824984t^{5} - 141318t^{4} + 712584t^{3} - 99252t^{2} - 4536t - 46899\] \[B(t) = -3908898t^{36} + 554040t^{35} - 12195684t^{34} - 90945720t^{33} - 1694034t^{32} - 420634944t^{31} - 497906784t^{30} - 1595422656t^{29} - 1731744360t^{28} - 6348776544t^{27} - 9067830768t^{26} - 6801918624t^{25} - 48120356232t^{24} + 12379563072t^{23} - 126428068512t^{22} + 28502988480t^{21} - 206315835804t^{20} + 18027874512t^{19} - 240335075160t^{18} - 18027874512t^{17} - 206315835804t^{16} - 28502988480t^{15} - 126428068512t^{14} - 12379563072t^{13} - 48120356232t^{12} + 6801918624t^{11} - 9067830768t^{10} + 6348776544t^{9} - 1731744360t^{8} + 1595422656t^{7} - 497906784t^{6} + 420634944t^{5} - 1694034t^{4} + 90945720t^{3} - 12195684t^{2} - 554040t - 3908898\]
Info about rational points
Comments on finding rational points None
Elliptic curve whose $2$-adic image is the subgroup $y^2 = x^3 - 579x - 5362$, with conductor $72$
Generic density of odd order reductions $299/2688$

Back to the 2-adic image homepage.