Curve name | $X_{230d}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 7 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 8 & 7 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{230}$ | ||||||||||||
Curves that $X_{230d}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{230d}$ | |||||||||||||
Curves that minimally cover $X_{230d}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -110592t^{24} + 1105920t^{22} - 4036608t^{20} + 6248448t^{18} - 3089664t^{16} - 967680t^{14} + 946944t^{12} - 241920t^{10} - 193104t^{8} + 97632t^{6} - 15768t^{4} + 1080t^{2} - 27\] \[B(t) = -14155776t^{36} + 212336640t^{34} - 1305870336t^{32} + 4190109696t^{30} - 7293763584t^{28} + 6168379392t^{26} - 959938560t^{24} - 1995964416t^{22} + 1225912320t^{20} - 302026752t^{18} + 306478080t^{16} - 124747776t^{14} - 14999040t^{12} + 24095232t^{10} - 7122816t^{8} + 1022976t^{6} - 79704t^{4} + 3240t^{2} - 54\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 3152x + 151488$, with conductor $2352$ | ||||||||||||
Generic density of odd order reductions | $299/2688$ |