Curve name | $X_{235c}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 7 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 9 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{235}$ | ||||||||||||
Curves that $X_{235c}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{235c}$ | |||||||||||||
Curves that minimally cover $X_{235c}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{24} + 540t^{22} - 3942t^{20} + 12204t^{18} - 12069t^{16} - 7560t^{14} + 14796t^{12} - 7560t^{10} - 12069t^{8} + 12204t^{6} - 3942t^{4} + 540t^{2} - 27\] \[B(t) = -54t^{36} + 1620t^{34} - 19926t^{32} + 127872t^{30} - 445176t^{28} + 752976t^{26} - 234360t^{24} - 974592t^{22} + 1197180t^{20} - 589896t^{18} + 1197180t^{16} - 974592t^{14} - 234360t^{12} + 752976t^{10} - 445176t^{8} + 127872t^{6} - 19926t^{4} + 1620t^{2} - 54\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy + y = x^3 + x^2 - 738431x - 244478347$, with conductor $1470$ | ||||||||||||
Generic density of odd order reductions | $11/112$ |