Curve name | $X_{236g}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 0 \\ 8 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 3 \\ 0 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{236}$ | ||||||||||||
Curves that $X_{236g}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{236g}$ | |||||||||||||
Curves that minimally cover $X_{236g}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -110592t^{24} + 1105920t^{22} + 2598912t^{20} - 46835712t^{18} + 121326336t^{16} - 30827520t^{14} - 131763456t^{12} - 7706880t^{10} + 7582896t^{8} - 731808t^{6} + 10152t^{4} + 1080t^{2} - 27\] \[B(t) = 14155776t^{36} - 212336640t^{34} + 3089498112t^{32} - 27377270784t^{30} + 111635988480t^{28} - 144845438976t^{26} - 269705576448t^{24} + 823468032000t^{22} - 200518447104t^{20} - 595708342272t^{18} - 50129611776t^{16} + 51466752000t^{14} - 4214149632t^{12} - 565802496t^{10} + 109019520t^{8} - 6683904t^{6} + 188568t^{4} - 3240t^{2} + 54\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - 65857x - 6510547$, with conductor $294$ | ||||||||||||
Generic density of odd order reductions | $81/896$ |