Curve name | $X_{236h}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 5 & 5 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 8 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 3 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{236}$ | ||||||||||||
Curves that $X_{236h}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{236h}$ | |||||||||||||
Curves that minimally cover $X_{236h}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -6912t^{16} + 27648t^{14} + 393984t^{12} - 836352t^{10} - 1136160t^{8} - 209088t^{6} + 24624t^{4} + 432t^{2} - 27\] \[B(t) = -221184t^{24} + 1327104t^{22} - 30191616t^{20} + 112250880t^{18} + 147101184t^{16} - 488208384t^{14} - 515676672t^{12} - 122052096t^{10} + 9193824t^{8} + 1753920t^{6} - 117936t^{4} + 1296t^{2} - 54\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 - 21504x - 1220940$, with conductor $336$ | ||||||||||||
Generic density of odd order reductions | $53/896$ |