Curve name | X241c | |||||||||||||||
Index | 96 | |||||||||||||||
Level | 32 | |||||||||||||||
Genus | 0 | |||||||||||||||
Does the subgroup contain −I? | No | |||||||||||||||
Generating matrices | [52001],[721123],[72141] | |||||||||||||||
Images in lower levels |
|
|||||||||||||||
Meaning/Special name | ||||||||||||||||
Chosen covering | X241 | |||||||||||||||
Curves that X241c minimally covers | ||||||||||||||||
Curves that minimally cover X241c | ||||||||||||||||
Curves that minimally cover X241c and have infinitely many rational points. | ||||||||||||||||
Model | P1, a universal elliptic curve over an appropriate base is given by y2=x3+A(t)x+B(t), where A(t)=−27t16−432t8−432 B(t)=54t24−1620t16−5184t8−3456 | |||||||||||||||
Info about rational points | ||||||||||||||||
Comments on finding rational points | None | |||||||||||||||
Elliptic curve whose 2-adic image is the subgroup | y2+xy+y=x3−x2−21931x−1244565, with conductor 514 | |||||||||||||||
Generic density of odd order reductions | 9827/86016 |