Curve name | $X_{2a}$ | ||||||
Index | $4$ | ||||||
Level | $4$ | ||||||
Genus | $0$ | ||||||
Does the subgroup contain $-I$? | No | ||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 1 \\ 1 & 2 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 2 & 3 \end{matrix}\right]$ | ||||||
Images in lower levels |
|
||||||
Meaning/Special name | |||||||
Chosen covering | $X_{2}$ | ||||||
Curves that $X_{2a}$ minimally covers | |||||||
Curves that minimally cover $X_{2a}$ | |||||||
Curves that minimally cover $X_{2a}$ and have infinitely many rational points. | |||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{6} - 139968t^{4} - 241864704t^{2} - 139314069504\] \[B(t) = 54t^{9} + 373248t^{7} + 967458816t^{5} + 1114512556032t^{3} + 481469424205824t\] | ||||||
Info about rational points | |||||||
Comments on finding rational points | None | ||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 - 114x - 127$, with conductor $196$ | ||||||
Generic density of odd order reductions | $121/168$ |