Curve name | $X_{38}$ | |||||||||
Index | $12$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 0 \\ 6 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 6 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 6 \\ 6 & 7 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{8}$ | |||||||||
Curves that $X_{38}$ minimally covers | $X_{8}$, $X_{14}$, $X_{16}$ | |||||||||
Curves that minimally cover $X_{38}$ | $X_{62}$, $X_{66}$, $X_{38a}$, $X_{38b}$, $X_{38c}$, $X_{38d}$ | |||||||||
Curves that minimally cover $X_{38}$ and have infinitely many rational points. | $X_{62}$, $X_{66}$, $X_{38a}$, $X_{38b}$, $X_{38c}$, $X_{38d}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{38}) = \mathbb{Q}(f_{38}), f_{8} = f_{38}^{2} - 1\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 - 442x - 2784$, with conductor $350$ | |||||||||
Generic density of odd order reductions | $513/3584$ |