Curve name |
$X_{51}$ |
Index |
$12$ |
Level |
$8$ |
Genus |
$1$ |
Does the subgroup contain $-I$? |
Yes |
Generating matrices |
$
\left[ \begin{matrix} 5 & 0 \\ 0 & 5 \end{matrix}\right],
\left[ \begin{matrix} 1 & 3 \\ 6 & 7 \end{matrix}\right],
\left[ \begin{matrix} 5 & 5 \\ 2 & 5 \end{matrix}\right],
\left[ \begin{matrix} 1 & 1 \\ 2 & 5 \end{matrix}\right]$ |
Images in lower levels |
|
Meaning/Special name |
|
Chosen covering |
$X_{12}$ |
Curves that $X_{51}$ minimally covers |
$X_{12}$ |
Curves that minimally cover $X_{51}$ |
$X_{142}$, $X_{145}$, $X_{169}$, $X_{173}$, $X_{175}$, $X_{176}$ |
Curves that minimally cover $X_{51}$ and have infinitely many rational
points. |
|
Model |
\[y^2 = x^3 + 4x\] |
Info about rational points |
Rational point | Image on the $j$-line |
$(0 : 1 : 0)$ |
\[ \infty \]
|
$(2 : 4 : 1)$ |
\[8000 \,\,(\text{CM by }-8)\]
|
$(0 : 0 : 1)$ |
\[ \infty \]
|
$(2 : -4 : 1)$ |
\[8000 \,\,(\text{CM by }-8)\]
|
|
Comments on finding rational points |
None |
Elliptic curve whose $2$-adic image is the subgroup |
None |
Generic density of odd order reductions |
N/A |