The modular curve $X_{66d}$

Curve name $X_{66d}$
Index $48$
Level $8$
Genus $0$
Does the subgroup contain $-I$? No
Generating matrices $ \left[ \begin{matrix} 3 & 6 \\ 2 & 5 \end{matrix}\right], \left[ \begin{matrix} 1 & 2 \\ 2 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 4 & 1 \end{matrix}\right]$
Images in lower levels
LevelIndex of imageCorresponding curve
$2$ $6$ $X_{8}$
$4$ $24$ $X_{24d}$
Meaning/Special name
Chosen covering $X_{66}$
Curves that $X_{66d}$ minimally covers
Curves that minimally cover $X_{66d}$
Curves that minimally cover $X_{66d}$ and have infinitely many rational points.
Model $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -324t^{8} - 5184t^{7} - 48384t^{6} - 290304t^{5} - 1064448t^{4} - 2322432t^{3} - 3096576t^{2} - 2654208t - 1327104\] \[B(t) = 31104t^{11} + 684288t^{10} + 6994944t^{9} + 43794432t^{8} + 189775872t^{7} + 613122048t^{6} + 1518206976t^{5} + 2802843648t^{4} + 3581411328t^{3} + 2802843648t^{2} + 1019215872t\]
Info about rational points
Comments on finding rational points None
Elliptic curve whose $2$-adic image is the subgroup $y^2 = x^3 - 3268x + 71808$, with conductor $2240$
Generic density of odd order reductions $419/2688$

Back to the 2-adic image homepage.