Curve name  $X_{98h}$  
Index  $48$  
Level  $8$  
Genus  $0$  
Does the subgroup contain $I$?  No  
Generating matrices  $ \left[ \begin{matrix} 1 & 2 \\ 4 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 4 & 7 \end{matrix}\right]$  
Images in lower levels 


Meaning/Special name  
Chosen covering  $X_{98}$  
Curves that $X_{98h}$ minimally covers  
Curves that minimally cover $X_{98h}$  
Curves that minimally cover $X_{98h}$ and have infinitely many rational points.  
Model  $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = 27t^{8} + 108t^{6}  135t^{4} + 54t^{2}  27\] \[B(t) = 54t^{12} + 324t^{10}  729t^{8} + 756t^{6}  243t^{4}  162t^{2} + 54\]  
Info about rational points  
Comments on finding rational points  None  
Elliptic curve whose $2$adic image is the subgroup  $y^2 + xy + y = x^3 + x^2  1050x  13533$, with conductor $210$  
Generic density of odd order reductions  $47/672$ 