This problem is kind of like the strong induction problem we finished in class today.

Given a positive integer n, let f(n) be the largest possible value of the product $\prod_{i=1}^{k} a_i$ if a_1 , ..., a_k are positive integers with $\sum_{i=1}^{k} a_i = n$? (We also define f(0) = 1.)

For example, f(1) = 1, because 1 = 1, f(2) = 2 because 2 = 2 gives a product of 2, and 2 = 1 + 1 gives a product of 1. We also have f(3) = 3, f(4) = 4 and f(5) = 6 (because 5 = 2 + 3 gives a product of 6, which is better than the alternatives).

(a) Explain why if $n \ge 2$, then f(n) is equal to the maximum value of (n-k)f(k) as k varies from 0 to n-1.

(b) Use (a) to calculate f(n) for $n \leq 10$ and guess a formula for f(n) for all positive integers n.

(c) Show that $f(n) \ge 2(n-2)$ for $n \ge 3$. (Hint: n = 2 + (n-2).) Conclude that f(n) > n if $n \ge 5$.

(d) Suppose that $n \ge 5$ is a positive integer and $n = a_1 + a_2 + \dots + a_k$ is a decomposition of n with $a_1 \le a_2 \le \dots \le a_k$ and the product $a_1 a_2 \dots a_k$ is maximal. Use (c) to show that $a_1 \le 4$. Conclude that $f(n) = \max\{f(n-1), 2f(n-2), 3f(n-3), 4f(n-4)\}$.

(e) Use strong induction and (d) to prove the guess you made in part (b).