Day 20 homework - Assigned 3/2 and due 3/27

Starred problems below are extra-credit for undergraduates and required for graduate students.

1. (a) Prove that A_5 is not isomorphic to D_{30} .

(b) Let \mathbb{R}^{\times} be the multiplicative group of real numbers and \mathbb{C}^{\times} be the multiplicative group of complex numbers. Prove that \mathbb{R}^{\times} is not isomorphic to \mathbb{C}^{\times} . (Be careful, although it's not obvious, there is a bijection between \mathbb{R}^{\times} and \mathbb{C}^{\times} .)

2. Let G and \overline{G} be isomorphic finite groups. Suppose that the subgroup of G generated by all elements in G of order 2 has order 48. Prove that the subgroup of \overline{G} generated by all elements of order 2 in \overline{G} also has order 48. [An element of the subgroup of a group G generated by an element of order 2 is a finite product of elements in G that have order 2. This question sounds random. The point is that "the subgroup generated by all elements of order 2 having order 48" is an intrinsic group theoretic property, and so it must be preserved by isomorphism.]

3. * Let G be a group whose order is $2^k m$ where m is odd and $k \ge 1$. Suppose that G contains a cyclic subgroup of order 2^k . Prove that G contains a subgroup of order $2^{k-1}m$. Here are some hints.

(a) Let \overline{G} be the subgroup of S_{2^km} that is isomorphic to G from Cayley's theorem. Show that \overline{G} is not contained in A_{2^km} .

(b) Let $K = \overline{G} \cap A_{2^k m}$. Show that K is a subgroup of \overline{G} that contains half of the elements of \overline{G} . Make the desired conclusion.