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Problem A− 6 from the 1990 Putnam exam states:

If X is a finite set, let |X| denote the number of elements in X. Call an ordered pair
(S, T ) of subsets of {1, 2, . . . , n} admissible if s > |T | for each s ∈ S, and t > |S| for each
t ∈ T. How many admissible ordered pairs of subsets of {1, 2, . . . , 10} are there? Prove
your answer.

It is no coincidence that the solution, 17711, is the 21st Fibonacci number. The number of admissible
ordered pairs of subsets of {1, 2, . . . , n} with |S| = a and |T | = b is n−b

a
n−a
b . Summing over all

values of a and b leads to

Identity 1
n

a=0

n

b=0

n− b
a

n− a
b

= f2n+1.

where f0 = 1, f1 = 1 and for n ≥ 2, fn = fn−1 + fn−2. The published solutions [6, 10] use “con-
voluted” algebraic methods. Yet the presence of both Fibonacci numbers and binomial coefficients
demands a combinatorial explanation. Beginning with our proof of Identity 1, we provide sim-
ple, combinatorial arguments for many fibinomial identities – identities that combine (generalized)
Fibonacci numbers and binomial coefficients.
Fibonacci numbers can be combinatorially interpreted in many ways [9]. The primary tool used

in this note will be tilings of 1 × n boards with tiles of varying lengths. The identities presented
are viewed as counting questions, answered in two different ways. To begin with, Identity 1 is easily
seen by answering

Question: How many ways can a board of length 2n+1 be tiled using (length 1) squares
and (length 2) dominoes?

Answer 1: A lengthm board can be tiled in fm ways, which can be seen by conditioning
on whether the last tile is a square or a domino. Consequently, a board of length 2n+1
can be tiled f2n+1 ways.

Answer 2: Condition on the number of dominoes on each side of the median square.

Any tiling of a (2n+1)-board must contain an odd number of squares. Thus one square,
which we call the median square, contains an equal number of squares to the left and
right of it. For example, the 13-tiling in Figure 1 has 5 squares. The median square, the
third square, is located in cell 9.

How many tilings contain exactly a dominoes to the left of the median square and exactly
b dominoes to the right of the median square? Such a tiling has (a + b) dominoes and
therefore (2n + 1) − 2(a + b) squares. Hence the median square has n − a − b squares
on each side of it. Since the left side has (n − a − b) + a = n − b tiles, of which a are
dominoes, there are n−b

a ways to tile to the left of the median square. Similarly, there

are n−a
b ways to tile to the right of the median square. Hence there are n−b

a
n−a
b

tilings altogether.

Varying a and b overall feasible values, we obtain the total number of (2n+ 1)-tilings as
n
a=0

n
b=0

n−b
a

n−a
b .
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Figure 1: Every square-domino tiling of odd length must have a median square.The 13-tiling above
has 3 dominoes left of the median square and 1 domino to the right of the median square. The
number of such tilings is 5

3
3
1 .

We can extend this identity by utilizing the 3-bonacci numbers, defined by θn = 0 for n < 0,
θ0 = 1 and for n ≥ 1, θn = θn−1 + θn−3.

Identity 2
n
a=0

n
b=0

n
c=0

n−b−c
a

n−a−c
b

n−a−b
c = θ3n+2.

Question: How many ways can a board of length 3n + 2 be tiled using squares and
trominoes?

Answer 1: It is easy to see that θn counts the number of ways to tile a board of length
n with squares and (length 3) trominoes. Hence there are θ3n+2 such tilings of a board
of length 3n+ 2.

Answer 2: The number of squares in any tiling of a (3n+ 2)-board must be 2 greater
than a multiple of 3. Hence there will exist two goalpost squares, say located at cells x
and y, such that there are an equal number of squares to the left of x, between x and
y, and to the right of y. We condition on the number of trominoes in the three regions
defined by the goalposts. If the number of trominoes in each region is, from left to right,
a, b, c, then there are a total of a+ b+ c trominoes and (3n+ 2)− 3(a+ b+ c) squares,
including the two goldpost squares. Thus each region has n− (a+ b + c) squares. The
leftmost region has n−b−c tiles, a of which are trominoes, and there are n−b−c

a ways to

arrange them. Likewise the tiles of the second and third region can be arranged n−a−c
b

ways and n−a−b
c ways, respectively.

As a, b, and c vary, the total number of (3n+ 2)-tilings is the left side of our identity.

Applying the same logic, we immediately obtain the following k-bonacci generalization.

Identity 3 Let κn be the k-bonacci number defined for n ≥ 1 by κn = κn−1 + κn−k, where κ0 = 1
and for j < 0, κj = 0. Then for n ≥ 0, κkn+(k−1) equals
n

a1=0

n

a2=0

· · ·
n

ak=0

n− (a2 + a3 + · · ·+ ak)
a1

n− (a1 + a3 + · · ·+ ak)
a2

· · · n− (a1 + a2 + · · ·+ ak−1)
ak

.

Another generalization of Fibonacci numbers are the k-th order Fibonacci numbers defined by
gn = 0 for n < 0, g0 = 1, and for n ≥ 1, gn = gn−1 + gn−2 + · · ·+ gn−k. The next identity is proved
by non-trivial algebraic methods in [7] and [8], but when viewed combinatorially, as done in [5], it
is practically obvious.

Identity 4 For all n ≥ 0,

gn =
n1 n2

· · ·
nk

n1 + n2 + · · ·+ nk
n1, n2, . . . , nk

,

where the summation is over all non-negative integers n1, n2, . . . , nk such that n1+2n2+· · ·+knk = n.
Question: In how many ways can we tile a board of length n using tiles with lengths
at most k?

Answer 1: By its definition, it is combinatorially clear that gn counts this quantity.

Answer 2: Condition on the number of tiles of each length. If for 1 ≤ i ≤ k there are
ni tiles of length i, then we must have n1+2n2+ · · ·+ knk = n. The number of ways to
permute these tiles is given by the multinomial coefficient n1+n2+···+nk

n1,n2,...,nk
.
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More colorfully, for nonnegative integers c1, . . . , ck we define the generalized k-th order Fibonacci
number by hn = 0 for n < 0, h0 = 1, and for n ≥ 1, hn = c1 · hn−1 + c2 · hn−2 + · · · + ck · hn−k.
It is easy to see that hn counts the number of ways to tile a board of length n with colored tiles of
length at most k, where for 1 ≤ i ≤ k, a tile of length i may be assigned any one of ci colors. The
previous identity and argument immediately generalizes to the following identity.

Identity 5 For all n ≥ 0,

hn =
n1 n2

· · ·
nk

n1 + n2 + · · ·+ nk
n1, n2, . . . , nk

cn11 c
n2
2 · · · cnkk ,

where the summation is over all non-negative integers n1, n2, . . . , nk such that n1+2n2+· · ·+knk = n.

Identity 1 can be generalized another way. The following identity originally appeared in [4] and
was proved by sophisticated algebraic methods.

Identity 6

n

a1=0

n

a2=0

· · ·
n

ak=0

n− ak
a1

n− a1
a2

· · · n− ak−1
ak

= fkn+k−1/fk−1.

Not surprisingly, this can also be proved combinatorially, [3], although the argument is tricky. What
follows are identities with similar appearance that are practically obvious when viewed combinato-
rially.

Identity 7
n

a1=0

n

a2=0

· · ·
n

ak=0

n

a1

n− a1
a2

· · · n− ak−1
ak

= fnk+1.

Question: In how many ways can we simultaneously tile n distinguishable boards of
length k + 1 with squares and dominoes?

Answer 1: Since each board can be tiled fk+1 ways, there are f
n
k+1 such tilings.

Answer 2: Condition on the number of dominoes covering each consecutive pair of cells.
Specifically, we claim there are n

a1

n−a1
a2

· · · n−ak−1
ak

ways to create n tilings of length
k + 1 where a1 of them begin with dominoes, a2 have dominoes covering cells 2 and 3,
and generally for 1 ≤ i ≤ k, ai of them have dominoes covering cells i and i+ 1. To see
this, notice there are n

a1
ways to decide which of the n tilings begin with a domino (the

rest begin with a square). Once these are selected, then among those n− a1 tilings that
do not begin with a domino there are n−a1

a2
ways to determine which of those will have

a domino in cells 2 and 3. (The other n − a1 − a2 tilings will have a square in cell 2.)
Continuing in this fashion, we see that once the tilings with dominoes covering cells i−1
and i are determined, there are n−ai−1

ai
ways to determine which tilings have dominoes

covering cells i and i+ 1.

More generally, by tiling n distinguishable boards of length k + 1 with squares and dominoes
where the first c of them must begin with a square, the same reasoning establishes:

Identity 8 For 0 ≤ c ≤ n,
n

a1=0

n

a2=0

· · ·
n

ak=0

n− c
a1

n− a1
a2

· · · n− ak−1
ak

= fckf
n−c
k+1 .
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It might surprise you that Identity 7 can be modified to produce

Identity 9
n

a1=0

n

a2=0

· · ·
n

ak=0

n

a1

n− a1
a2

· · · n− ak−1
ak

2a1 = Lnk+1,

where Lj is the j-th Lucas number, and more generally

Identity 10
n

a1=0

n

a2=0

· · ·
n

ak=0

n

a1

n− a1
a2

· · · n− ak−1
ak

Ga10 G
n−a1
1 = Gnk+1,

where Gj is the j-th Gibonacci number, defined by G0, G1, and the Fibonacci recurrence Gj =
Gj−1 + Gj−2 for j ≥ 2. For non-negative integers G0 and G1, Gj can be combinatorially defined
[2] as the number of ways to tile a length n board with squares and dominoes subject to the initial
conditions that the first tile is given a phase, where there are G0 choices for the phase of a domino
and G1 choices for the phase of a square. Applying the logic of the proofs of Identities 7 and 8 gives
us the above identity as well as

Identity 11 For 0 ≤ c ≤ n,
n

a1=0

n

a2=0

· · ·
n

ak=0

n− c
a1

n− a1
a2

· · · n− ak−1
ak

Ga10 G
n−a1
1 = Gc1f

c
kG

n−c
k+1.

As with Identity 5, these identities can also be generalized by colorizing them.
We end with an open question. The Fibonomial Numbers are defined like binomial coefficients

with F Is on top. That is, Fibonimial n
k F =

FnFn−1···Fn−k+1
F1F2···Fk , where Fj = fj−1 is the traditional

j-th Fibonacci number. Amazingly n
k F is always an integer [1]. We challenge the reader to find a

combinatorial proof of this fact.
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