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Abstract. We study congruences between newforms in the spaces S4(Γ0(p),Zp) for primes
p. Under a suitable hypothesis (which is true for all p < 5000 with the exception of 139
and 389) we provide a complete description of the congruences between these forms, which
leads to a formula (conjectured by Calegari and Stein [6]) for the index of the Hecke algebra
TZp

in its normalization. Since the hypothesis is amenable to computation we are able
to verify the conjectured formula for p < 5000. In [6] Calegari and Stein gave a number
of conjectures which provide an outline for the proof of this formula, and the results here
clarify the dependencies between the various conjectures. Finally, we discuss similar results
for the spaces S6(Γ0(p),Zp).

1. Introduction

Suppose that k is an even positive integer. If N is a positive integer, denote by Sk(N,Z)
the free Z-module of cusp forms of weight k on Γ0(N) whose Fourier expansions at infinity
have integer coefficients. For any ring A we may define

Sk(N,A) := Sk(N,Z)⊗ A.

Let p ≥ 5 be prime. Fixing once and for all an algebraic closure Qp of the field Qp of
p-adic numbers, we define

Sk(p) := Sk(p,Qp), Sk = Sk(1,Qp).

For a form f =
∑
a(n)qn, let

f |Up :=
∑

a(pn)qn.

The Fricke involution on Sk(p) is then given by

f |wp := −p1−
k
2 f |Up.

For each such space we have the canonical decomposition

(1.1) Sk(p) = S+
k (p)⊕ S−k (p)

into the plus and minus eigenspaces for the Fricke involution wp.
Let TZ = Z[. . . , Tn, . . . ] (where Tn is the usual Hecke operator) be the full Hecke algebra

associated to Sk(p,Z). For any ring A we may define TA := T⊗A. Here we will be primarily
concerned with

T := TZp = T⊗ Zp = Zp[. . . , Tn, . . . ].
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We restrict our attention to those values of k for which there are no oldforms. In this case
we have

Tp = Up = −p
k
2
−1wp,

from which we see that T acts both on the plus and minus spaces. We define the two
quotients

T+ = T/(Tp + p
k
2
−1), T− = T/(Tp − p

k
2
−1).

A newform in Sk(p) is a normalized eigenform of all of the Hecke operators. Its coefficients
lie in Zp, and generate an extension of finite degree over Qp. Therefore it makes sense to
speak of a congruence between newforms.

Roughly speaking, congruences between newforms arise in two ways: from the failure of
the Hecke ring T to be integrally closed, or from ramification in the coefficient fields of the
newforms. In [6], Calegari and Stein conjecture that for any prime p, the Hecke algebra T
of S2(p) is integrally closed. They also show that the only prime p < 50923 for which there
is a congruence between two weight two newforms is p = 389.

Questions about congruences between newforms have a surprising number of applications
to the arithmetic of elliptic curves. If Calegari and Stein’s conjecture is true for the prime
p, then it follows (see [17, 1, 7]) that if E/Q is an elliptic curve of conductor p, then p does
not divide the degree of the modular parametrization Φ : X0(p) → E. A result of Shimura
relates the modular degree to the special value of L(Sym2E, s) at s = 2 (the edge of the
critical strip). Hence the statement that p does not divide the modular degree of E can be
thought of as an elliptic curve analogue of the classical conjecture of Vandiver that p does
not divide the class number of Q(ζp + ζ−1p ). Watkins [16] has verified this conjecture for
about 54000 elliptic curves of prime conductor.

The conjecture of Calegari and Stein is also related to the following question. If p is a fixed
prime, is there an elliptic curve E/Q(ζp) for which all of the p-torsion points are defined over
Q(ζp)? There are infinitely many such curves E/Q with this property when p = 2, 3 and 5.
In [12], Merel and Stein prove that there are no such curves if 7 ≤ p ≤ 1000 and p 6= 13.
They show, under suitable technical hypotheses, that each order p subgroup C of E[p] gives
rise to a point on X0(p) defined over Q(

√
p). This is shown to be impossible, and so it

suffices to verify the technical hypotheses. One of these hypotheses is verified by checking
that there are no congruences between newforms in S2(p) (a little more care is needed in
the case p = 389). Subsequently, Rebolledo [13] proved there are no such curves for p = 13
using a different method.

In this paper, we are concerned with weights k ≥ 4, in which case there are congruences
between newforms. In [6], Calegari and Stein provide a conjectural picture of the situation.
Their main conjecture (Conjecture 1) is a formula for the index of the Hecke algebra in its
normalization. In addition, an outline for the proof of this conjecture is given. Calegari
and Stein conjecture that T+ and T− are integrally closed (Conjecture 3), and in the case
that k = 4, they predict (Conjecture 5) that the existence of a congruence for a particular
newform is determined by whether or not the newform lies in the image of the Θ operator.

The goal in this paper is to clarify the dependencies among these conjectures, and to prove
the main conjecture in the case k = 4 subject to the hypothesis which we introduce next.

Hypothesis 1. There is no congruence between two newforms which lie in S+
k (p), nor any

congruence between two newforms which lie in S−k (p).
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Hypothesis 1 is slightly stronger than Conjecture 3 of [6]. Namely, if K is the finite exten-
sion of Qp generated by the coefficients of all of the newforms in Sk(p), then Hypothesis 1 is
equivalent to this conjecture with the extra assumption that the extension K/Qp is unram-
ified. (These connections may not be immediately obvious to the non-expert–see the next
section for a discussion.)

Hypothesis 1 is amenable to computation, and we have verified its truth for S4(p) for all
p < 5000 with the exception of 139 and 389. (In these cases the fields in question are ramified,
so that Conjecture 3 of [6] is indeed true for all primes in this range.) These computations
extend those of Calegari and Stein, who computed the discriminant of the Hecke algebra of
each S4(p) for p < 500. See Section 5 for a description of the algorithm.

Here we will prove the following result, the conclusion of which is the k = 4 case of
Conjecture 1 of [6].

Theorem 1. Suppose that p ≥ 5 is prime and that Hypothesis 1 is true for S4(p). Then the
index of T in its normalization is pb

p
12
c.

Corollary 2. The conclusion of Theorem 1 is true for all p < 5000.

This theorem will follow from the next result, which gives a precise description of the
congruences between cusp forms of weight four. Before we state the result, we require some
definitions. If N ≥ 1 is an integer, let Mk(N,Z) denote the free Z-module of holomorphic
modular forms of weight k on Γ0(N) whose Fourier expansions at infinity have integer coef-
ficients. For any ring A, let Mk(N,A) := Mk(N,Z)⊗A (we will only be concerned with the
cases N = 1 and N = p). Next, if f ∈Mk(N,Zp), we let f ∈Mk(N,Fp) be the form obtained
by reducing the coefficients of f mod p. We say that two forms f and g are congruent if
f = g. Now, we define the Ramanujan Θ operator: If

f =
∞∑
n=0

a(n)qn,

then

Θf :=
∞∑
n=1

na(n)qn.

If f ∈Mk(p,Zp), then Θf is congruent modulo p to a modular form in Sk+2(p,Zp).
We recall (see for example Theorem 4.1 of [3]) that if f ∈ S4(p) is a newform, then f is

congruent modulo p to a form of level 1 and weight 2p+ 2; therefore the filtration of f (see
the next section for the definition) is either 2p+ 2 or p+ 3.

Theorem 3. Suppose that p ≥ 5 is prime and that Hypothesis 1 is true for S4(p). Suppose
that h ∈ S4(p) is a newform. Then the following conditions are equivalent.

(1) h is congruent to another newform in S4(p).
(2) h is the simultaneous reduction of a newform in S+

4 (p,Zp) and a newform in S−4 (p,Zp).
(3) h is congruent to a modular form of level 1 and weight p+ 3.
(4) h is not in the image of the theta-operator from M2(p,Zp).

Under these assumptions, the number of pairs of eigenforms which satisfy a congruence is
exactly b p

12
c. Moreover, 2 =⇒ 1 trivially, and the implications 2 =⇒ 4 ⇐⇒ 3 hold

without the assumption of Hypothesis 1.
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Remark. Many of these results and methods can be extended to more general spaces of
modular forms, and in particular to spaces Snew, p

k (Np), where p - N is prime. (A recent
paper of Barcau and Paşol [4] contains results in this direction.) We restrict our attention to
the simpler case here to reduce the number of hypotheses, and to produce hypotheses which
can be tested computationally.

Remark. Frank Calegari has described to us a deep framework based on recent advances in
modularity in which to consider these conjectures. Calegari’s outline (which involves, among
many other elements, recent work of Kisin on local deformation rings) provides a conceptual
reason to believe in their truth.

In Section 2, we review basic facts about modular forms mod p, and provide background
about Hecke algebras over Zp. In Section 3, we prove Theorem 3, and in Section 4, we deduce
Theorem 1 from Theorem 3. In Section 5, we discuss computations in the weight 4 case.
Sections 6 and 7 contain the results about forms of weight 6.

Acknowledgments. The authors thank Frank Calegari for his helpful comments, and they
thank the referee for a number of suggestions which improved the exposition.

2. Preliminaries on modular forms and Hecke algebras

We will use the notation for spaces of modular forms given in the introduction. If f ∈
Mk(1,Fp) then we define the filtration of f by

w(f) := inf{k′ : f(z) (mod p) ∈Mk′(1,Fp)}.
We require some basic facts about filtrations.

Proposition 4 (Swinnerton-Dyer [15]). If f ∈Mk(1,Fp) then the following are true.

(1) w(f) ≡ k (mod p− 1).
(2) w(Θf) ≡ w(f) + 2 (mod p− 1).
(3) w(Θf) ≤ w(f) + p+ 1, with equality if and only if w(f) 6≡ 0 (mod p).

Although the discussion of Hecke algebras below may be well-known to experts, we have
chosen to give a fairly complete exposition for the benefit of the readers. For simplicity we
restrict the discussion to those values of k for which Sk(p) contains no oldforms. For some
of this material one may consult the survey articles of Darmon, Diamond, and Taylor [8] or
of Diamond and Im [9].

The ring T is finitely generated and free as a Zp-module. The minimal primes p of T are
those with p∩Zp = (0), and the maximal primes are those with p∩Zp = (p). Each normalized

eigenform f =
∑
a(n)qn ∈ Sk(p,Zp) gives rise to a map T → Zp defined via Tn 7→ a(n).

The image of this map is an order in the ring of integers of a finite extension of Qp, and the

kernel is a minimal prime ideal which depends only on the Gal(Qp/Qp) conjugacy class of
the eigenform f . This gives a correspondence between such conjugacy classes and minimal
primes of T. Similarly, there is a correspondence between Gal(Fp/Fp) conjugacy classes of

eigenforms in Sk(p,Fp) and maximal primes of T.
Each minimal prime of T is contained in a unique maximal ideal. If m is a maximal ideal,

then the minimal primes contained in m correspond to distinct Galois conjugacy classes of
characteristic zero eigenforms with the same characteristic p reductions. Assuming Hypoth-
esis 1, the number of such minimal primes is either one or two (if there were three or more
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characteristic zero eigenforms with the same reduction then two would have the same Fricke
eigenvalue).

Theorems 8.7 and 8.15 of Matsumura [11] show that

(2.1) T ∼=
∏
m

Tm,

where the product runs over maximal ideals m of T. Each Tm is a finitely generated, free
Zp-module (see, for example, §12 of [9]).

If R is a commutative ring with unity, and S is the multiplicative system of all non-zero-
divisors, then the total ring of fractions of R is the ring S−1R. The normalization of R,

which we denote by R̃, is the integral closure of R in its total ring of fractions. In order to

address Theorem 1, we would like to determine as explicitly as possible the rings T and T̃.
Using (2.1), a moment’s thought (or Exercise 2.5.1 of [10]) shows that

T̃ ∼=
∏
m

T̃m.

Corollary 2.1.13 of [10] states that if R is a reduced ring, and P1, . . . , Ps are the minimal
prime ideals of R, then

R̃ ∼= R̃/P1 × R̃/P2 × · · · × R̃/Ps.

Recalling our assumption that Sk(p) contains no oldforms, we see that the operators {Tn}
are simultaneously diagonalizable, and therefore that T is reduced (i.e. contains no non-zero
nilpotents). Thus, for each m, we either have

(2.2) T̃m
∼= ˜Tm/p1Tm

or

(2.3) T̃m
∼= ˜Tm/p1Tm × ˜Tm/p2Tm,

according to the number of minimal primes which m contains (i.e. the number of char-
acteristic zero eigenforms which reduce to the characteristic p eigenform corresponding to
m).

Assume Hypothesis 1, and let p be a minimal prime ideal; then p corresponds to a
Gal(Qp/Qp) class of eigenforms, say f1, f2, . . . , fr. Let K be the field generated by the
coefficients of one of these eigenforms, and let OK be its ring of integers. We have the
following important fact.

Lemma 5. Assume Hypothesis 1. Then, K/Qp is unramified.

Proof. Suppose to the contrary that Hypothesis 1 holds and that K/Qp is ramified. Then
there is a non-trivial element σ in the inertia subgroup of Gal(K/Qp). Let fi be an eigenform
with the property that the field obtained by adjoining the coefficients of fi to Qp is ramified.
Let σ(fi) denote the form obtained by applying σ to each coefficient of fi. Then σ(fi) is a
newform with the property that σ(fi) ≡ fi (mod p). Moreover, since the pth coefficient of
fi is −pk−1 times the Fricke eigenvalue of fi, it follows that the Fricke eigenvalue of σ(fi) is
the same as that of fi. This contradicts Hypothesis 1. �

As mentioned in the introduction, Hypothesis 1 is equivalent to Conjecture 3 of [6] with
the extra hypothesis that K/Qp is unramified. Congruences between newforms with the
same Fricke eigenvalue arise in one of two ways: from ramification of the field of definition
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(as demonstrated in the proof of Lemma 5), or from the failure of T+ and T− to be integrally
closed. Hypothesis 1 asserts that neither occurs, while Conjecture 3 of [6] precludes only the
latter.

It follows from Lemma 5 with the notation above that K is the unique unramified extension
of Qp of degree r. In particular, K is Galois and is the field generated by the coefficients of
any one of the eigenforms f1, f2, . . . , fr.

Lemma 6. Assume Hypothesis 1, and suppose that m is a maximal ideal which contains
a unique minimal prime ideal p. Suppose that p corresponds to the field K as in the last
paragraph. Then we have

Tm
∼= T̃m

∼= T̃m/pm ∼= OK .

Proof. Adopt the assumptions and the notation in the statement of the lemma. By the
discussion at the start of this section, we know that T/p is the subring of K generated by
the coefficients of the eigenforms f1, . . . , fr, and and is hence an order O in OK . Moreover,
with pm = pTm, we have

(2.4) Tm/pm ∼= T/p ∼= O.

Since Õ = OK , this together with (2.2) establishes all but the first of the claimed isomor-
phisms.

We next show that O = OK . To this end, recall that the pth Fourier coefficient of fi is

equal to −λpp
k
2
−1, where λp is the Fricke eigenvalue of fi. Since the fi are Galois-conjugate,

the forms f1, . . . , fr have the same Fricke eigenvalue. By Hypothesis 1, none of them are
congruent mod p, and hence the reductions

f 1, f 2, . . . , f r

are distinct. Set F = O/pO. Since K is unramified, the action of Gal(F/Fp) on the reduced

eigenforms f i is the same as that of Gal(K/Qp) on the eigenforms f1, . . . , fr. This implies
that |Gal(F/Fp)| ≥ r, and hence F = Fpr . We conclude that O/pO ∼= OK/pOK

∼= Fpr .
Therefore OK = O + pOK , and Nakayama’s lemma implies that O = OK , as desired.

Using (2.4), the proof will be complete once we show that pm = 0. Since T is reduced,
(2.1) shows that Tm is reduced. Therefore the nilradical of Tm (which is the intersection of
the two prime ideals of Tm) is 0, and the result follows. �

Suppose now that we are in the case when there are two minimal primes p1 and p2 contained
in m. We will prove the following lemma.

Lemma 7. Suppose that k = 4. Assume Hypothesis 1 and let K1 and K2 be the coefficient
fields of the conjugacy classes of newforms corresponding to p1 and p2. Then K1 = K2, and
if O denotes the ring of integers of K := K1 = K2, we have

Tm
∼= {(a, b) ∈ O ×O : a ≡ b (mod p)}.

Proof. The fields K1 and K2 are unramified, and O1/pO1 (respectively O2/pO2) is the ex-
tension of Fp generated by the coefficients of the reduction of the first (respectively second)
conjugacy class of congruent eigenforms. Thus

[K1 : Qp] = [O1/pO1 : Fp] = [O2/pO2 : Fp] = [K2 : Qp],

from which it follows that K1 = K2 = K.
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From (2.3) we have an embedding

Tm → T̃m
∼= ˜Tm/p1Tm × ˜Tm/p2Tm.

The argument in the proof of Lemma 6 shows that Tm/p1Tm
∼= Tm/p2Tm

∼= O, and hence
we have an embedding

Tm → O×O.
Moreover, both projections p1 : Tm → O and p2 : Tm → O are surjective. Let I1 = ker p2
and I2 = ker p1; via this embedding we may view each of I1 and I2 as a subset of O. In fact,
I1 and I2 are ideals of O. If, for example, a ∈ I1, then (a, 0) ∈ Tm. Since p1 is surjective, for
any b ∈ O, there is some c ∈ O with (b, c) ∈ Tm. Then, (a, 0)(b, c) = (ab, 0) ∈ Tm and hence
ab ∈ I1.

Define a map φ : O/I1 → O/I2 by sending the coset a + I1 to b + I2, where (a, b) is any
element of Tm. If (a1, b1) and (a2, b2) are two elements of Tm with a1 + I1 = a2 + I1, then
(a1 − a2, 0) ∈ Tm, and so

(a1, b1)− (a2, b2)− (a1 − a2, 0) = (0, b1 − b2) ∈ Tm.

Since b1 − b2 ∈ I2 it follows that φ is well-defined. It is easy to check that φ is a ring
homomorphism, which is surjective since p2 is surjective.

Moreover, if φ(a+ I1) = b+ I2 = 0, then b ∈ I2 and so (0, b) ∈ Tm. Thus,

(a, b)− (0, b) = (a, 0) ∈ Tm

and so a ∈ I1 and a + I1 = 0. Thus, φ is injective and hence an isomorphism. Since every
non-zero ideal of O has finite index and there is at most one ideal of O of any given index,
it follows that I1 = I2. This implies that

Tm = {(a, b) ∈ O ×O : b+ I2 = φ(a+ I1)}.
Finally, the image in Tm of the Hecke operator T1 is (1, 1), and the image in Tm of the

Hecke operator Tp is ±(p,−p). Therefore (2p, 0) ∈ Tm, and since p > 2 we conclude that
I1 = I2 = (p). Hence

Tm = {(a, b) ∈ O ×O : b ≡ φ(a) (mod p)}.
Since φ : O/pO → O/pO is an automorphism, we have that

Tm
∼= {(a, b) ∈ O ×O : a ≡ b (mod p)}.

�

3. Proof of Theorem 3

Proof of Theorem 3. To begin, we note that (2) ⇐⇒ (1) is an immediate consequence of
Hypothesis 1.

We turn to the implications which can be proved without the assumption of Hypothesis 1.
Ahlgren and Barcau [2] have proved the following, which is Conjecture 4 of [6] (this result
has been generalized to higher level in [4]). Let p be the maximal ideal in Zp.

Theorem 8. Suppose that f ∈ S2(p,Zp) and h ∈ S4(p,Zp) are eigenforms of wp, are not
identically zero modulo p, and satisfy

Θf ≡ h (mod p).

Then the eigenvalues of f and h under wp have opposite signs.
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An inspection of the proof shows that the same conclusion holds when f = E∗2(z) =
E2(z)− pE2(pz), the weight 2 Eisenstein series in M2(p).

To see that (2) =⇒ (4), suppose that we have a congruence

(3.1) h+ ≡ h− (mod p)

between forms in S+
4 (p,Zp) and S−4 (p,Zp). If h+ is in the image of Θ then we would have

(3.2) h+ ≡ h− ≡ Θf (mod p)

for some form f ∈ S2(p,Zp). However, this is impossible by Theorem 8.

To see that (3) =⇒ (4), suppose that h ≡ Θf (mod p) where f ∈ M2(p,Zp) and

h ∈ S4(p,Zp). We have w(f) = p + 1 6≡ 0 (mod p), so by Proposition 4 we must have
w(h) = 2p+ 2 (recall that the filtration is either p+ 3 or 2p+ 2).

For the reverse implication, suppose that (3) is false, so that w(h) = 2p + 2. Write
h =

∑
a(n)qn. By a result of Serre and Tate (see Théorème 3 of [14]) we know that the

mod p system of eigenvalues

{a(`) (mod p) : ` prime}
arises via twisting from a system of weight ≤ p+ 1 and level one. In other words, there is a
level one eigenform g with w(g) ≤ p+ 1 and with the property that

(3.3) h = Θig

for some i ∈ {0, . . . , p− 1}.
If i = 0 then h = g, which is impossible since w(h) = 2p+ 2. If i > 0 then h is a member

of its own theta-cycle (i.e. h = Θp−1h). Straightforward considerations using Proposition 4
show that the filtrations in this theta cycle are

(3.4) 2p+ 2 = w(h), 3p+ 3 = w(Θh), . . . , p2 + p = w(Θp−2h).

Suppose by way of contradiction that i ≥ 2. From (3.3) we see that

Θp−ih = Θpg = Θg.

With (3.4), this yields a contradiction since 1 ≤ p − i ≤ p − 2. We conclude that i = 1.
Therefore w(g) = p+ 1. Since S2(p,Fp) = Sp+1(1,Fp) as Fp-vector spaces, we conclude that

h is the reduction of a form in Θ
(
S2(p,Zp)

)
, showing that (4) =⇒ (3) unconditionally.

To complete the proof of the theorem, we will show that (1) ⇐⇒ (3) under the assumption
of Hypothesis 1. To this end, we introduce some notation. Let D := dimS4(Γ0(p)); since
the old space is trivial, there are exactly D newforms in this space. We enumerate them as
follows:

(3.5)
h+1 , . . . , h

+
s

h−1 , . . . , h
−
s ,

and

(3.6) g1, . . . , gt.

Here the forms h+i , h−i are all of the newforms (with Fricke eigenvalues +1 and −1, re-
spectively) in S4(Γ0(p)) which have a congruence, and the gj are those newforms without a
congruence. By Hypothesis 1, we may list the forms in such a way that

(3.7) h+i ≡ h−i (mod p) for all i
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and such that the forms h+i , h−i satisfy no other congruences.
To show that (1) =⇒ (3) it will suffice to show that each form h+i has filtration p + 3.

To this end, we define

(3.8) E(z) := Ep−1(z)− pp−1Ep−1(pz) ∈Mp−1(p,Zp).

Then we have E(z) ≡ 1 (mod p) and

(3.9) E(z)|p−1wp ≡ 0 (mod p
p+1
2 ).

We recall that under Hypothesis 1, the fields of definition of the newforms in S4(p) are
unramified over Qp. Let K be the field generated over Qp by the coefficients of all of these
newforms, and let O be its ring of integers. Since p is a uniformizer for O, we conclude from
(3.7) that there exists a form h ∈ S4(p,O) with the property that

(3.10) h+ − h− = ph.

Applying wp to (3.10) we conclude that

(3.11) h+ + h− = ph|4wp.

Combining (3.10) and (3.11) gives

2h+ = ph|4wp + ph.

It follows that ph|4wp ∈ S4(p,O) and that w(h+) = w(ph|4wp). To see that this filtration is
p+ 3, we use the trace map from Sk(p) to Sk(1), which is given by

Tr(f) := f + p1−
k
2 (f |kwp) |Up.

Then by (3.9) we obtain

Tr(p(h |4wp)E)− p(h |4wp)E = p1−
p+3
2

(
(p(h |4wp)E)|p+3wp

)
|Up

= p−
p−1
2 h(E|p−1wp)|Up

≡ 0 (mod p).

SetH := Tr(p(h |4wp)E) ∈ Sp+3(1,O). ThenH ≡ p(h |4wp) (mod p), so w(h+) = w(ph|4wp) =
p+ 3, as desired. This shows that (1) =⇒ (3).

We turn to the implication (3) =⇒ (1). From (3.5) and (3.6) we have

(3.12) D = 2s+ t.

Each of the eigenforms h+j have filtration p+ 3 and are distinct modulo p. It follows that

(3.13) dimSp+3 ≥ s

On the other hand, the forms h+1 , . . . , h
+
s , g1, . . . , gt are congruent modulo p to forms in S2p+2,

and are pairwise incongruent. Therefore

(3.14) dimS2p+2 ≥ s+ t.

On the other hand, standard dimension formulas and (3.12) give the equality

(3.15) dimS2p+2 + dimSp+3 = dimS4(p) = 2s+ t.

Combining (3.13), (3.14) and (3.15) gives

(3.16) dimSp+3 = s, dimS2p+2 = s+ t.
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We conclude that

h satisfies a congruence ⇐⇒ w(h) = p+ 3.

The last assertion follows since dimSp+3 =
⌊

p
12

⌋
. �

4. Proof of Theorem 1

Theorem 1 follows easily from Theorem 3. By Lemmas 6 and 7, a conjugacy class of
eigenforms with no congruence does not contribute to the index of T in its normalization,
while a pair of conjugacy classes of eigenforms of size r with a congruence contributes a factor
of pr to the index. By Theorem 3 the total number of pairs of newforms with a congruence
is
⌊

p
12

⌋
, and Theorem 1 follows.

5. Computations

In this section we describe the computations which lead to Corollary 2. To check that
there is no congruence between two forms in S+

4 (p), it suffices to find a prime ` so that
the `th coefficients of the newforms in S+

4 (p) are distinct mod p. This is equivalent to the
statement that p does not divide the discriminant of T`, restricted to S+

4 (p). Similarly, to
show there is no congruence between two forms in S−4 (p), it suffices to find a prime q so that
the discriminant of the characteristic polynomial of Tq acting on S−4 (p) is coprime to p.

Numerical evidence suggests that for primes ` 6= p, the characteristic polynomial of T` will
have few irreducible factors. In particular, it should be possible to determine the character-
istic polynomial of T` restricted to either of these spaces using the following algorithm:

(1) Compute the dimension of S+
4 (p) (using standard dimension formulas and the formula

for the genus of X+
0 (p)).

(2) Compute the characteristic polynomial r(x) of T` on S4(p) using the algorithm of
Kohel and Stein (implemented in MAGMA [5]).

(3) Factor r(x) in Q[x].
(4) Find all collections of irreducible factors of r(x) whose cumulative degrees sum to the

dimension of S+
4 (p) (in practice there is only one such collection, usually consisting

of a single factor).

For example, the dimension of S+
4 (89) is 14. The characteristic polynomial of T2 factors

as a product of four irreducible factors, of degrees 1, 1, 6, and 14. Since there is only one
partition of 14 with parts from the above set, we are able to compute the characteristic
polynomials of T2 acting on S+

4 (89) and S−4 (89).
For all primes p ≤ 5000 the collection of irreducible factors of r(x) described in step (4)

was unique, and so it was possible to determine the characteristic polynomial restricted to
the desired subspaces. In fact, p = 1531 was the only prime larger than 1000 for which any
characteristic polynomial was found to have more than two irreducible factors.

Apart from the cases p = 139 and p = 389, the algorithm shows that the discriminant of
the characteristic polynomial of T` restricted to S+

4 (p) is coprime to p for some ` ≤ 19, and
similarly for S−4 (p). When p = 139, there is a pair of conjugacy classes of eigenforms (with
opposite Fricke eigenvalue) over Q139(

√
139) which are congruent. When p = 389, there is

a single conjugacy class of eigenforms over Q389(
√

389) which contains a congruence. These
forms arise as the image under the Θ operator of the pair of eigenforms in S2(389) which are
congruent.
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6. Results in weight six

In this section we describe the extension of these ideas to higher weight by considering
the case of k = 6 in detail. The situation here is complicated by the fact that there are
both (mod p) and (mod p2) congruences between newforms. In principle, these ideas could
be extended to higher weights, although without further insight the results would become
increasingly less satisfying, since stronger hypotheses would be required.

We recall (see for example Theorem 4.1 of [3]) that if f ∈ S6(p) is a newform, then w(f) is
one of p+5, 2p+4, or 3p+3. As in the previous case, it seems that the filtration determines
the type of congruence which f satisfies. In particular, we will prove the following.

Theorem 9. Suppose that p ≥ 5 is prime and that Hypothesis 1 is true for S6(p). If f is a
normalized eigenform in S6(p), then we have

(1) w(f) = 3p+ 3 ⇐⇒ f has no congruences.
(2) w(f) = 2p+ 4 =⇒ f has a congruence modulo p but not modulo p2.
(3) w(f) = p+ 5 ⇐= f has a congruence modulo p2.

As before, the theta operator plays a key role. In particular, we have the following.

Proposition 10. Suppose that f ∈ S6(p). Then

(1) w(f) = 3p+ 3 ⇐⇒ f ∈ Θ2M2(p).
(2) w(f) = 2p+ 4 ⇐⇒ f ∈ ΘM4(p) \Θ2M2(p).
(3) w(f) = p+ 5 ⇐⇒ f 6∈ ΘM4(p).

We suspect that more is true.

Conjecture 11. All of the implications in Theorem 9 can be replaced by equivalences.

Hypothesis 1 and Conjecture 11 together imply the k = 6 case of Conjecture 1 of [6].

Theorem 12. Suppose that p ≥ 5 is prime and that Hypothesis 1 and Conjecture 11 are
true for S6(p). Then, the index of T in its normalization is{

p3b
p
12
c p ≡ 1, 5 (mod 12),

p3b
p
12
c+2 p ≡ 7, 11 (mod 12).

We have computed all of the p-adic eigenforms and their filtrations for k = 6 and p < 191
with the exception of p = 139. In all of these cases, Conjecture 11 is true. In particular,
Theorem 9 is true for p in this range.

7. Proofs of results for weight 6

We begin by proving Proposition 10 since it involves no additional hypotheses.

Proof of Proposition 10. We begin with the first equivalence. Suppose that f ∈ Θ2M2(p).
Then there is a form F ∈ Sp+1 with f = Θ2F , from which we conclude that w(f) = 3p+ 3.

Conversely, suppose that w(f) = 3p + 3, and let F ∈ S3p+3 be a form whose reduction is

f . Using the result of Serre and Tate mentioned above, we have

F = ΘkG

for some level-one eigenform G with w(G) ≤ p + 1 (so that k ≥ 2). From this we conclude
that

w(Θp−kF ) = w(ΘG) ≤ 2p+ 2.
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It follows from Proposition 4 that k ≤ 2. Therefore k = 2 and w(G) = p + 1, so that G is
congruent to a form in M2(p). This proves the first equivalence.

We turn to the second. If f ∈ ΘM4(p) \ Θ2M2(p) then there is a form F ∈ S2p+2 with

f = ΘF . Since w(F ) = p+3 or w(F ) = 2p+2, we have w(ΘF ) = 2p+4 or w(ΘF ) = 3p+3.
However, the latter possibility is ruled out by the first equivalence.

Conversely, suppose that w(f) = 2p + 4, let F ∈ S2p+4 be a form whose reduction is f ,
and let G be a level-one eigenform with w(G) ≤ p+ 1 such that

F = ΘkG

As above we conclude that k ≤ 3. Since w(ΘG) ≤ 2p + 2, we cannot have k = 1. Since
k ≥ 2, there must be a drop in the theta cycle (and hence a filtration which is zero modulo
p) between G and Θk−1G. Using this fact, it is easy to deduce that k = 3 and

w(G) = p− 1, w(ΘG) = 2p, w(Θ2G) = p+ 3, w(Θ3G) = 2p+ 4.

Since S4(p,Fp) = S3p+1(1,Fp) as Fp vector spaces (see for example Theorem 4.1 of [3]) and

Sp+3(1,Fp) ⊆ S3p+1(1,Fp), it follows that Θ2G is congruent to a form in M4(p), so that
f ∈ ΘM4(p). The second equivalence (and with it the third) follows. �

Let D := dimS6(p). Since the old space is trivial, there are exactly D newforms in this
space. We assume that Hypothesis 1 is true for S6(p). It follows that these newforms have
coefficients in the maximal unramified extension of Qp. We enumerate them as follows:

(7.1)
h+1 , . . . , h

+
s , g+1 , . . . , g

+
t , f1, . . . , fr,

h−1 , . . . , h
−
s , g−1 , . . . , g

−
t ,

in such a way that

(7.2) h+i ≡ h−i (mod p2),

(7.3) g+j ≡ g−j (mod p) but g+j 6≡ g−j (mod p2),

and

(7.4) the fk have no congruence.

As before, the superscript + or − denotes the sign of the wp-eigenvalue. By Hypothesis 1,
(7.2) and (7.3) describe all of the congruences between newforms in S6(p).

We have the following.

Lemma 13. With notation as in (7.1), (7.2), and (7.3), we have

w(hi) = p+ 5,

w(gj) ≤ 2p+ 4,

w(fk) ≤ 3p+ 3,

for all i, j, and k.

Proof of Lemma 13. Each newform has filtration at most 3p + 3. The first two assertions
in the lemma follow from the p-adic properties of the trace operator as in in the proof of
Theorem 3. For example, if we write h± for one of the pairs h±i in (7.1), then we have

(7.5) h+ − h− = p2h
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for some weight 6 form h with p-integral coefficients. Applying wp to (7.5) and adding the
resulting equation yields

(7.6) 2h+ = p2h+ p2h|wp.

From this we conclude that p2h|wp has integral coefficients, and that

(7.7) w(h+) = w(p2h|wp).

Using the form E from (3.8), we see that

Tr(p2(h|wp) · E)− p2(h|wp) · E = p3−
p+5
2 (h(E|wp)) |Up = ph′

for some form h′ with integral coefficients. Using (7.6), this shows that w(h+) ≤ p + 5.
Equality follows since there are no weight 6 cusp forms of level one.

The assertion about the gj is proved with the same argument, (using E2 in place of E)
and we omit the details. �

Proof of Theorem 9. We know that each of the eigenforms h+i have filtration p + 5 and are
distinct modulo p. It follows that

(7.8) dimSp+5 ≥ s.

Similarly, we conclude that

(7.9)
dimS2p+4 ≥ s+ t,

dimS3p+3 ≥ s+ t+ r.

Using dimension formulas, we compute that

(7.10) dimS2p+4 + dimS3p+3 = dimS6(p) = 2r + 2s+ t,

from which it follows that
dimS2p+4 = s+ t,

dimS3p+3 = s+ t+ r.

The claims in the theorem now follow. �

Proof of Theorem 12. The discussion in Section 2 applies to all weights with suitable mod-
ification. For example, in weight 6, distinct newforms may be congruent mod p or mod p2.
In the case where a characteristic p eigenform arises from two characteristic zero eigenforms
with a congruence mod p, but not mod p2, the corresponding localized Hecke algebra is

Tm
∼= {(a, b) ∈ O ×O : a ≡ b (mod p)},

and in the case of a mod p2 congruence, the localized Hecke algebra is

Tm
∼= {(a, b) ∈ O ×O : a ≡ b (mod p2)}.

A pair of conjugacy classes of eigenforms of size r contributes the factor pr or p2r to the
index in the respective cases.

By Conjecture 11, the sum of the sizes of the conjugacy classes with mod p2 congruences
is dimSp+5, and the sum of the sizes of the conjugacy classes with mod p congruences but
not mod p2 congruences is dimS2p+4− dimSp+5. Hence, the p-adic valuation of the index of
the Hecke algebra is

dimSp+5 + dimS2p+4 =

{
3b p

12
c p ≡ 1, 5 (mod 12),

3b p
12
c+ 2 p ≡ 7, 11 (mod 12).
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