Elastic collisions

Momentum is conserved.

\[\vec{p}_i = \vec{p}_f \]

Kinetic Energy is conserved.

\[KE_i = KE_f \]

\[m_1v_{1i}^2 + m_2v_{2i}^2 = m_1v_{1f}^2 + m_2v_{2f}^2 \]

So in an elastic collision, particles bounce off each other without loss of kinetic energy.

Usually such collisions are approximate!

Quiz

You are given two carts, A and B. They look identical, and you are told that they are made of the same material. You place A at rest on an air track and give B a constant velocity directed to the right so that it collides elastically with A. After the collision, both carts move to the right, the velocity of B being smaller than what it was before the collision. What do you conclude?

1. Cart A is hollow.
2. The two carts are identical.
3. Cart B is hollow.

Inelastic collisions

Momentum is conserved.

\[\vec{p}_i = \vec{p}_f \]

Kinetic Energy is NOT conserved.

\[m_1\vec{v}_{1i} + m_2\vec{v}_{2i} = m_1\vec{v}_{1f} + m_2\vec{v}_{2f} \]

So in an inelastic collision, particles bounce off each other with a loss of kinetic energy!

The lost kinetic energy is converted into thermal or internal energy.

A completely inelastic collision is one where the particles stick together. (also called a perfectly inelastic collision)
Elastic versus Inelastic collisions

Momentum is conserved (unless there is an external force)

Kinetic Energy is conserved only in an elastic collision

Elastic:

\[p_i = p_f \]
\[m_1 \vec{v}_{1i} + m_2 \vec{v}_{2i} = m_1 \vec{v}_{1f} + m_2 \vec{v}_{2f} \]
\[m_1 \vec{v}_{1i}^2 + m_2 \vec{v}_{2i}^2 = m_1 \vec{v}_{1f}^2 + m_2 \vec{v}_{2f}^2 \]

Inelastic:

\[m_1 \vec{v}_{1i} + m_2 \vec{v}_{2i} = m_1 \vec{v}_{1f} + m_2 \vec{v}_{2f} \]
\[m_1 \vec{v}_{1i} + m_2 \vec{v}_{2i} = m_1 \vec{v}_{1f} + m_2 \vec{v}_{2f} \]
\[m_1 \vec{v}_{1i} + m_2 \vec{v}_{2i} = m_1 \vec{v}_{1f} + m_2 \vec{v}_{2f} \]

Perfectly inelastic collision of two particles

Before collision

\[m_1 \quad \vec{v}_{1i} \]
\[m_2 \quad \vec{v}_{2i} \]

After collision

\[m_1 + m_2 \quad \vec{v}_f \]

Notice that \(\vec{p} \) and \(\vec{v} \) are vectors and, thus have a direction (+/-)

\[K_i = K_f + E_{\text{loss}} \]
\[\frac{1}{2} m_1 \vec{v}_{1i}^2 + \frac{1}{2} m_2 \vec{v}_{2i}^2 = \frac{1}{2} (m_1 + m_2) \vec{v}_f^2 + E_{\text{loss}} \]

There is a loss in energy \(E_{\text{loss}} \)

Perfectly inelastic collision of two particles II

Before collision

\[m_1 \quad \vec{v}_{1i} \]
\[m_2 \quad \vec{v}_{2i} \]

After collision

\[m_1 + m_2 \quad \vec{v}_f \]

What if one particle was initially stationary?

\[\vec{v}_f = \frac{m_1 \vec{v}_{1i} + m_2 \vec{v}_{2i}}{m_1 + m_2} \]

\[\vec{v}_f = \frac{m_2 \vec{v}_{2i}}{m_1 + m_2} \]
Example I

Ballistic Pendulum:

In a ballistic pendulum a bullet (0.1 kg) is fired into a block (0.5 kg) that is suspended from a light string. The block (with the bullet stuck in it) is lifted up by 0.051 m.

(a) What is the speed of the combined bullet/pendulum right after the collision?
(b) Find the initial speed of the bullet?
(c) Find the loss in mechanical energy due to the collision

Example 2

Accident investigation. Two automobiles of equal mass approach an intersection. One vehicle is traveling towards the east with 29 mi/h (13.0 m/s) and the other is traveling north with unknown speed. The vehicles collide in the intersection and stick together, leaving skid marks at an angle of 55° north of east. The second driver claims he was driving below the speed limit of 35 mi/h (15.6 m/s).

Is he telling the truth?
What is the speed of the “combined vehicles” right after the collision?
How long are the skid marks (\(\mu_k = 0.5 \))

Quiz

A cart moving at speed \(v \) collides with an identical stationary cart on an air track, and the two stick together after the collision. What is their velocity after colliding?

1. \(v \)
2. 0.5 \(v \)
3. zero
4. \(-0.5 \) \(v \)
Quiz

Is it possible for a stationary object that is struck by a moving object to have a larger final momentum than the initial momentum of the incoming object?

1. Yes
2. No because such an occurrence would violate the law of conservation of momentum.