
CHAPTER 20 HINT FOR EXERCISE 6

Use the ideal gas law pV = NkT , where p is the pressure, V is the volume, N is the
number of molecules, T is the temperature in kelvins, and k is the Boltzmann constant
(1.3807 × 10−23 J/K). Solve for N
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The work done by the external agent is the negative of the work done by the gas and is given
by

Wext = −
∫ V

V

p dV ,

where p is the pressure, V1 is the initial volume, and V2 is the final volume. Now p = nRT/V ,
where n is the number of moles and T is the temperature in kelvins. Furthermore, the
compression is isothermal, so T is constant. Thus

Wext = −nRT

∫ V

V

dV

V
= −nRT ln

V2

V1
.
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The partial pressure due to gas 1 is given by p1 = n1RT/V , where n1 is the number of moles
of that gas, R is the gas constant (8.315 J/mol·K), T is the temperature, and V is the volume
of the container. Similarly, the partial pressure due to gas 2 is given by p1 = n2RT/V . Note
that T and V each have the same values in the two expressions for the partial pressures.
The total pressure is p = p1 +p2 and the fraction that is attributable to gas 2 is p2/(p1 +p2).
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(a) Use the ideal gas law pV = nRT , where p is the pressure, V is the volume, n is the
number of moles of gas, R (= 8.315 J/mol ·K) is the gas constant, and T is the temperature
in kelvins. Solve for n.

(b) Now solve pV = nRT for T .

(c) Again solve pV = nRT for T or better yet consider the ratio

Tc

Ta
=

Vc

Va
.

This was obtained by dividing the ideal gas equation for point c by the ideal gas equation
for point a.

(d) The work done by the gas is the area enclosed by the graph. Since the graph is a
triangle its area is half the product of the base (2.0m3) and the altitude (5.0 kPa. Since the
process is a cycle, the change in the internal energy is zero and, according to the first law
of thermodynamics, the work done by the gas is equal to the energy absorbed by the gas as
heat.
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The air in the tube was originally at atmospheric pressure and occupied the full length L of
the tube. It was compressed isothermally to a length of L/2. That is, its volume was halved.
The ideal gas law (pV = nRT ) tells us that when the volume is isothermally halved the
pressure is doubled. Thus the pressure after compression is p = 2p0, where p0 is atmospheric
pressure.

Now use what you learned in Chapter 15 about incompressible fluids, the water in this case.
The pressure increases with depth: the pressure at a point in the fluid that is a distance h
below the surface is ρgh greater than the pressure at the surface. Here ρ is the density of
the fluid. Consider a point at the bottom of the tube. The pressure there is greater than
the pressure at the interface with the air in the tube by ρgL/2. That is, it is

pb = p + ρgL/2 .

On the other hand it is ρgh greater than atmospheric pressure. That is, it is

pb = p0 + ρgh .

Equate the two expressions for pb and solve for h.
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(a) Evaluate

vrms =

√
3RT

M
,

where M is the molar mass of N2 (14 g/mol). Be sure to change the temperature value to
the Kelvin scale.

(b) and (c) Solve

vrms =

√
3RT

M

for T .
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(a) Since the total mass of the gas is nM , where n is the number of moles and M is the
molar mass, the density is given by ρ = nM/V , where V is the volume. The pressure is
given by

p =
1
3
ρv2

rms .

Solve for vrms. Recall that 1.00 atm = 1.013 × 105 Pa.

(b) The average kinetic energy per mole is given by 3RT/2 and by Mv2
rms/2. Equate these

two expressions to obtain

M =
3RT

v2
rms

.

Evaluate this expression.
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(a) Use ρ = nM/V to obtain n = ρV/M . Substitute this expression for n in the ideal gas
law pV = nRT .

(b) Substitute R = NAk into pV = nRT , then replace NAn with N .
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Accosting to Eq. 20–25 the mean free path of a molecule in a gas is given by

λ =
1√

2πd2N/V
,

where d is the diameter of the molecule and N/V is the number of molecules per unit volume.

(a) Assume both argon and nitrogen gases obey the ideal gas law (pV = NkT , where p is
the pressure, k is the Boltzmann constant, and T is the temperature). Since the two gases
are at the same pressure and are at the same volume, N/V is the same for them. This means
that

λA

λN
=

d2
N

d2
A

,

where The subscript A refers to argon and the subscript N refers to nitrogen. Solve for
dA/dN .

(b) Use the ideal gas law to show that N/V = p/RT and therefore that

λ =
RT√
2πd2p

.

Here p is the pressure, T is the temperature, and R is the gas constant (8.315 J/mol · K).
The ratio of the mean free paths for the same gas at the same temperature but two different
pressures is

λ1

λ2
=

p2

p1
.

(c) The ratio of the mean free paths for the same gas at the same pressure but two different
temperatures is

λ1

λ2
=

T1

T2
.

Don’t forget that the temperature must be in kelvins.
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According to Eqs. 20–31 and 20–34 the average speed vavg and rms speed vrms of a gas of
molecules with molar mass M , at temperature T , are

vavg =

√
8RT

πM

and

vrms =

√
3RT

M
,

where R is the gas constant (8.315 J/mol · K). Set the expression for the average speed of
the molecules in gas 2 equal to twice the rms speed of the molecules in gas 1, then solve for
the mass ratio. The ratio of the molar masses is the same as the ratio of the atomic masses.
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Take the internal energy to be 0 at temperature T = 0K. Then, the internal energy at any
temperature is given by

Eint = nCV T ,

where CV is the molar specific heat for a constant volume process. For an ideal monatomic
gas CV = 3

2R.
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(a) Use the first law of thermodynamics

∆Eint = Q − W ,

where ∆Eint is the internal energy, W is the work done by the gas, and Q is the energy taken
in by the gas in the form of heat. Since the pressure is constant the work W done by the
gas is p∆V . Since the volume increases W is positive.

(b) Since pV = nRT the change in volume and change in temperature are related by p∆V =
nR ∆T , so

∆T =
p

nR
∆V .

The molar specific heat is determined by

Cp =
Q

n∆T
=

R

p

Q

∆V
.

(c) Use

CV =
∆Eint

n∆T
=

R

p

∆Eint

∆V
.
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(a) The change in the internal energy of an ideal gas during a process is given by

∆Eint = nCV ∆T ,

where n is the number of moles, CV is the molar specific heat, and ∆T is the change in
temperature. The molar specific heat of an ideal diatomic gas is CV = (5/2)R, where R
(= 8.315 J/mol · K) is the gas constant. You need to find the temperatures at points a and
c. Solve the ideal gas law paVa = nRTa for Ta and the ideal gas law pcVc = nRTc for Tc.

(b) Use the first law of thermodynamics:

∆Eint = Q − W ,

where Q is the energy taken in by the gas in the form of heat and W is the work done by
the gas. You can calculate W and solve the first law equation for Q. The work done by the
gas is given by

W =
∫ Vc

Va

p dV .

You might use the graph to find the pressure p as a function of the volume V . It is a linear
so you can write p = A + BV , where A and B are constants. Choose the constants so
p = 5.0 kPa when V = 2.0m3 and p = 2.0 kPa when V = 4.0m3. Then substitute the
function into the integrand and evaluate the integral. The change in the internal energy is
the same as for the diagonal path since the internal energy is a state function.

Alternatively, you might recognize that the integral for the work is the area under the
line from a to c. This area can be divided into two pieces: a triangle, whose area is half
the product of its base and altitude, and a rectangle, whose area is the product of two
perpendicular sides.

(c) Again use the first law of thermodynamics. The gas does work only during the portion
of the process from a to b and this work is W = pa(Vb − Va).
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(a) According to Table 20–1 of the text the molar mass of oxygen is M = 32.0 g/mol. If m
is the mass of the sample, then the number of moles present is n = m/M .

(b) Use
Q = nCp ∆T .

Since the molecules are diatomic Cp = CV + R = (5/2)R + R = 7R/2.

(c) The change in the internal energy is given by

∆Eint = nCV ∆T ,

where CV = 5R/2 is the molar heat capacity for a constant volume process. The fraction of
the energy transferred as heat that is used to increase the internal energy is given by

f =
∆Eint

Q
.
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(a) For an adiabatic change in volume of an ideal gas from volume V1 to volume V2

p1V
γ
1 = p2V

γ
2 ,

where p1 is the pressure when the volume is V1 and p2 is the pressure when the volume is
V2. Let p1 = 1.0 atm and v2 = V1/2, then solve for p2. The ideal gas law tells us that
p1V1 = nRT1 and p2V2 = nRT2, where T1 is the temperature when the volume is V1 and T2

is the temperature when the volume is V2. Both temperatures are in kelvins. Use the first
equation to eliminate n from the second and obtain

T2 =
p2V2

p1V1
T1 .

(b) Let V3 be the final volume, P3 be the final pressure, and T3 be the final temperature.
Then p3V3 = nRT3. Similarly, p2V2 = nRT2. Since p3 = p2, these equations lead to
V3/T3 = V2/T2. Solve for V3.
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(a) Let p0, V0, and T0 be the initial pressure, volume, and temperature, respectively. Let
p1, V1, and T1 be the final pressure, volume, and temperature respectively. The work done
by the gas and the energy input to it as heat are both zero during the process. This means
the internal energy does not change and, since the internal energy of an ideal gas depends
only on the temperature, the temperature does not change. Thus T1 = T0. According to
the ideal gas law p1V1 = nRT1 and p0V0 = nRT0. Solve these equations for T1 and T0, then
equate the two expression to each other and solve for p1. You should get p1 = p0V0/V1. Set
V1 = 3.00V0.

(b) Let p2 and V2 be the final pressure and volume. The process is adiabatic, so you can use
the relationship

p1V
γ
1 = p2V

γ
2 .

Substitute V2 = V1/3.00, p2 = (3.00)1/3p0, and p1 = .p0/3. Solve for γ. Recall that γ = 5/3
for a monatomic ideal gas, γ = 7/5 for a diatomic ideal gas, and γ = 4/3 for a polyatomic
ideal gas.

(c) The average kinetic energy per molecule is proportional to the temperature in kelvins.
Use the ideal gas law to show that T2/T0 = p2/p0. Thus K2/K0 = p2/p0.
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(a) For an adiabatic process
p1V

γ
1 = p2V

γ
2 .

The solution for γ is

γ =
ln(p1/p2)
ln(V2/V1)

.

Evaluate this expression and compare your result with 1.67 (monatomic), 1.40 (diatomic),
and 1.29 (polyatomic).

(b) Use the ideal gas law in the form

p1V1

T1
=

p2V2

T2
.

Solve for T2.

(c) Use the ideal gas law in the form

p1V1 = nRT1 .

Solve for n.

(d) The translational kinetic energy per mole is given by 3
2RT . For the energy before

compression substitute T1 = 273K and for the energy after compression substitute T2 =
2.73 × 104 K.

(e) Since the kinetic energy is given by

K =
1
2
Mv2

rms

the ratio of the rms speeds is the same as the ratio of the kinetic energies.

[
ans: (a) γ = 1.67, monatomic; (b) 2.7 × 104 K; (c) 4.5 × 104 mol; (d) 3.40 × 103 J,

3.40 × 105 J; (e) 0.010
]
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For each case let pi, Vi, and Ti be the initial pressure, volume, and temperature respectively
and let pf , Vf , and Tf be the final pressure, volume, and temperature.

(a) The process is isothermal, so Tf = Ti. Use the ideal gas law to show that pfVf = piVi.
Solve for pf . The work done by the gas is

W =
∫ Vf

Vi

p dV = nRTi

∫ Vf

Vi

dV

V
= nRTi ln

(
Vf

Vi

)
= piVi ln

(
Vf

Vi

)
.

The ideal gas law was used to substitute for p in the integrand and in the last step it was
used to substitute for nRTi.

(b) The process is adiabatic, so piV
γ
i = pfV γ

f , with γ = 5/3. Solve for pf . Use the ideal gas
law to find the final temperature: solve pfVf = nRTf for Tf . The energy taken in by the
gas as heat is zero, so the work done by the gas is the negative of the change in the internal
energy. Thus

W = −∆Eint = nCV ∆T ,

where CV (= 3R/2) is the molar specific heat. Thus W = −(3/2)nR(Tf − Ti).

(c) This part is worked the same way as part (b) but with γ = 7/5 and CV = (5/2)R.


