Prb. \#
$1 \quad F=\frac{k_{e} q_{1} q_{2}}{r^{2}} \quad: k_{e} \cong 10^{10} \mathrm{~N} / \mathrm{C}^{2} . \mathrm{m}^{2} \quad, \quad r \cong 1 \mathrm{~m} \quad, \quad \mathrm{q} 1=\mathrm{q} 2=1 \%$ of charge in person
Say have 100 kg person made of water.
Water is $\sim 10 \mathrm{~g} / \mathrm{mole} ; 1$ mole $\cong 10^{24}$ molecules ; water molecules have $\sim 10 \mathrm{e}^{-}$.
So in 100 kg have $\frac{10^{5} \mathrm{~g}}{10 \mathrm{~g} / \text { mole }}=10^{4}$ moles. Which is 10^{28} atoms, and that gives 10^{29} charges.
1% of this is 10^{27} charges, so $q_{1}=q_{2}=10^{27} e^{-}$.

$$
F=\frac{10^{10} 10^{27} 10^{27} 10^{-19} 10^{-19}}{1^{2}}=10^{26} \mathrm{~N}
$$

Mass of Earth ~ $10^{25} \mathrm{~kg}$
$F=m g=10^{26} N$
Thus the forces are of the same order of magnitude.

2
(a) Let the third bead have charge Q and be located distance x from the left end of the rod. This bead will experience a net force given by

$$
\overrightarrow{\mathbf{F}}=\frac{k_{e}(3 q) Q}{x^{2}} \hat{\mathbf{i}}+\frac{k_{e}(q) Q}{(d-x)^{2}}(-\hat{\mathbf{i}}) \text {, where } d=1.50 \mathrm{~m}
$$

The net force will be zero if $\frac{3}{x^{2}}=\frac{1}{(d-x)^{2}}$, or $d-x=\frac{x}{\sqrt{3}}$.
This gives an equilibrium position of the third bead of

$$
x=0.634 d=0.634(1.50 \mathrm{~m})=0.951 \mathrm{~m}
$$

(b) Yes, if the third bead has positive charge. The equilibrium would be stable because if charge Q were displaced either to the left or right on the rod, the new net force would be opposite to the direction Q has been displaced, causing it to be pushed back to its equilibrium position.

3
Each charge exerts a force of magnitude $\frac{k_{e} q Q}{(d / 2)^{2}+x^{2}}$ on the negative charge $-Q$: the top charge exerts its force directed upward and to the left, and bottom charge exerts its force directed downward and to the left, each at angle $\theta=\tan ^{-1}\left(\frac{d}{2 x}\right)$, respectively, above and below the x axis. The two positive charges together exert a net force:

$$
\begin{aligned}
\overrightarrow{\mathbf{F}} & =-2 \frac{k_{c} q Q}{(d / 2)^{2}+x^{2}} \cos \theta \hat{\mathbf{i}} \\
& =-2\left[\frac{k_{q} q Q}{\left(d^{2} / 4+x^{2}\right)}\right]\left[\frac{x}{\left(d^{2} / 4+x^{2}\right)^{1 / 2}}\right] \hat{\mathbf{i}} \\
& =\left[\frac{-2 x k_{q} q Q}{\left(d^{2} / 4+x^{2}\right)^{3 / 2}}\right] \hat{\mathbf{i}}=m \overrightarrow{\mathbf{a}}
\end{aligned}
$$

or for $x \ll \frac{d}{2}, \overrightarrow{\mathbf{a}} \approx-\left(\frac{2 k_{e} q Q}{m d^{3} / 8}\right) \overrightarrow{\mathbf{x}} \quad \rightarrow \quad \overrightarrow{\mathbf{a}} \approx-\left(\frac{16 k_{e} q Q}{m d^{3}}\right) \overrightarrow{\mathbf{x}}$
(a) The acceleration of the charge is equal to a negative constant times its displacement from equilibrium, as in $\overrightarrow{\mathbf{a}}=-\omega^{2} \overrightarrow{\mathbf{x}}$, so we have Simple Harmonic Motion with $\omega^{2}=\frac{16 k_{e} q Q}{m d^{3}}$.
(b) $\quad \omega^{2}=\left(\frac{2 \pi}{T}\right)^{2}=\frac{16 k_{e} q Q}{m d^{3}} \rightarrow T=\frac{2 \pi}{\omega}=\sqrt{\frac{\pi}{2} \sqrt{\frac{m d^{3}}{k_{e} q Q}}}$, where m is the mass of the object with charge $-Q$.
(c) $v_{\max }=\omega A=4 a \sqrt{\frac{k_{e} q Q}{m d^{3}}}$
note on (a): This example uses $q_{1}=3 q$, but the value of q_{1} differs for each person.

4
Call $Q=3.00 \mathrm{nC}$ and $q=|-2.00 \mathrm{nC}|=2.00 \mathrm{nC}$, and $r=4.00 \mathrm{~cm}=0.0400 \mathrm{~m}$. Then,

$$
E_{1}=E_{2}=\frac{k_{e} Q}{r^{2}} \text { and } E_{3}=\frac{k_{e} q}{r^{2}}
$$

Then,

$$
E_{y}=0
$$

$$
E_{x}=E_{\text {total }}=2 \frac{k_{c} Q}{r^{2}} \cos 30.0^{\circ}-\frac{k_{c} q}{r^{2}}
$$

$$
E_{x}=\frac{k_{e}}{r^{2}}\left(2 Q \cos 30.0^{\circ}-q\right)
$$

$$
E_{x}=\left[\frac{8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}}{(0.040 \mathrm{~m})^{2}}\right]
$$

$$
\times\left[2\left(3.00 \times 10^{-9} \mathrm{C}\right) \cos 30.0^{\circ}-2.00 \times 10^{-9} \mathrm{C}\right]
$$

$$
=1.80 \times 10^{4} \mathrm{~N} / \mathrm{C}
$$

(a) $1.80 \times 10^{4} \mathrm{~N} / \mathrm{C}$ to the right
(b) The electric force on a point charge placed at point P is

$$
F=q E=\left(-5.00 \times 10^{-9} \mathrm{C}\right) E=-8.98 \times 10^{-5} \mathrm{~N} \text { (to the left) }
$$

note for (b) that the given value of q may vary

5 Field lines emerge from positive charge and enter negative charge.
(a) The number of field lines emerging from positive q_{2} and entering negative charge q_{1} is proportional to their charges:

$$
\frac{q_{1}}{q_{2}}=\frac{-6}{18}=-\frac{1}{3}
$$

(b) From above, q_{1} is negative, q_{2} is positive

6
(a) $\quad N=\left(\frac{10.0 \text { grams }}{107.87 \text { grams } / \mathrm{mol}}\right)\left(6.02 \times 10^{23} \frac{\text { atoms }}{\mathrm{mol}}\right)\left(47 \frac{\text { electrons }}{\text { atom }}\right)$

In (a), the given mass may vary
$=2.62 \times 10^{27}$
(b) \# electrons added $=\frac{Q}{e}=\frac{1.00 \times 10^{-3} \mathrm{C} \text { added }}{1.60 \times 10^{-19} \mathrm{C} / \text { electron }}$

In (b), the given value of Q may vary
$=6.25 \times 10^{15}$ electrons added
Thus,
$\left(6.25 \times 10^{15}\right.$ added $)\left(\frac{1}{2.62 \times 10^{24} \text { present }}\right)=\left(\frac{2.38 \text { added }}{10^{9} \text { present }}\right)$
$\rightarrow 2.38$ electrons for every 10^{9} already present

