The potential difference is

$$
\Delta V=V_{f}-V_{i}=-5.00 \mathrm{~V}-9.00 \mathrm{~V}=-14.0 \mathrm{~V}
$$

and the total charge to be moved is

$$
Q=-N_{A} e=-\left(6.02 \times 10^{23}\right)\left(1.60 \times 10^{-19} \mathrm{C}\right)=-9.63 \times 10^{4} \mathrm{C}
$$

Now, from $\Delta V=\frac{W}{Q}$, we obtain

$$
W=Q \Delta V=\left(-9.63 \times 10^{4} \mathrm{C}\right)(-14.0 \mathrm{~J} / \mathrm{C})=1.35 \mathrm{MJ}
$$

Arbitrarily take $V=0$ at point P. Then the potential at the original position of the charge is (by Equation 25.3)

$$
\Delta V=V-0=V=-\overrightarrow{\mathbf{E}} \cdot \overrightarrow{\mathbf{s}}=-E L \cos \theta \quad \text { (relative to } P \text {) }
$$

At the final point a,
Note: Given values of q \& E may

$$
V=-E L \quad \text { (relative to } P \text {) }
$$ vary

Because the table is frictionless and the particle-field system is isolated, we have
or $\quad 0-q E L \cos \theta=\frac{1}{2} m v^{2}-q E L$
solving for the speed gives

$$
\begin{aligned}
v & =\sqrt{\frac{2 q E L(1-\cos \theta)}{m}} \\
& =\sqrt{\frac{2\left(2.00 \times 10^{-6} \mathrm{C}\right)(300 \mathrm{~N} / \mathrm{C})(1.50 \mathrm{~m})\left(1-\cos 60.0^{\circ}\right)}{0.0100 \mathrm{~kg}}} \\
& =0.300 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(a) At a distance of 0.250 cm from an electron, the electric potential is

$$
\begin{aligned}
V & =k_{e} \frac{q}{r}=\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(\frac{-1.60 \times 10^{-19} \mathrm{C}}{0.250 \times 10^{-2} \mathrm{~m}}\right) \\
& =-5.76 \times 10^{-7} \mathrm{~V}
\end{aligned}
$$

(b) The difference in potential between the two points is given by

$$
|\Delta V|=\left|k_{e} \frac{q}{r_{2}}-k_{e} \frac{q}{r_{1}}\right|=k_{e} q\left(\frac{1}{r_{2}}-\frac{1}{r_{1}}\right)
$$

Substituting numerical values,

$$
\begin{aligned}
& |\Delta V|=\mid\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(-1.60 \times 10^{-19} \mathrm{C}\right) \\
& \left.\quad \times\left(\frac{1}{0.250 \times 10^{-2} \mathrm{~m}}-\frac{1}{0.750 \times 10^{-2} \mathrm{~m}}\right) \right\rvert\,
\end{aligned}
$$

(c) The potential difference here can be solved the same way as in (b), where the only difference is the given value of r_{1}.
(d) Because the charge of the proton has the same magnitude $\begin{aligned} & \text { as that of the electron, only the sign of the answer to part }\end{aligned}$ (a) would change.

Note: The value of q and the distances given may vary.

$$
|\Delta V|=3.84 \times 10^{-7} \mathrm{~V}
$$

The total change in potential energy is the sum of the change in potential energy of the $q_{1}-q_{4}, q_{2}-q_{4}$, and $q_{3}-q_{4}$ particle systems:

$$
\begin{aligned}
U_{e}= & q_{4} V_{1}+q_{4} V_{2}+q_{4} V_{3}=q_{4} k_{e}\left(\frac{q_{1}}{r_{1}}+\frac{q_{2}}{r_{2}}+\frac{q_{3}}{r_{3}}\right) \\
U_{e}= & \left(10.0 \times 10^{-6} \mathrm{C}\right)^{2}\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right) \\
& \times\left(\frac{1}{0.600 \mathrm{~m}}+\frac{1}{0.150 \mathrm{~m}}+\frac{1}{\sqrt{(0.600 \mathrm{~m})^{2}+(0.150 \mathrm{~m})^{2}}}\right) \\
U_{e}= & 8.95 \mathrm{~J}
\end{aligned}
$$

Note: values of q, L, and W may vary.

5
Substituting given values into $V=\frac{k_{e} Q}{r}$, with $Q=N q$:

$$
7.50 \times 10^{3} \mathrm{~V}=\frac{\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right) Q}{0.300 \mathrm{~m}}
$$

Note: given values of R and V may vary, which would affect the value of Q
Substituting $\mathrm{Q}=2.50 \times 10^{-7}$ and $\mathrm{q}=1.60 \times 10^{-19}$

$$
N=\frac{2.50 \times 10^{-7} \mathrm{C}}{1.60 \times 10^{-19} \mathrm{C} / e^{-}}=1.56 \times 10^{12} \text { electrons }
$$

For points on the surface and outside, the sphere of charge behaves like a charged particle at its center, both for creating field and potential.
(a) Inside a conductor when charges are not moving, the electric field is zero and the potential is uniform, the same as on the surface, and $E=0$.

$$
V=\frac{k_{e} q}{R}=\frac{\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(26.0 \times 10^{-6} \mathrm{C}\right)}{0.140 \mathrm{~m}}=1.67 \mathrm{MV}
$$

(b) $E=\frac{k_{e} q}{r^{2}}=\frac{\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(26.0 \times 10^{-6} \mathrm{C}\right)}{(0.200 \mathrm{~m})^{2}}$

$$
=5.84 \mathrm{MN} / \mathrm{C} \text { away }
$$

$\oint E d A=E(2 \pi r l)=\frac{q_{\text {in }}}{\epsilon_{0}} \quad E=\frac{q_{\text {in }} / l}{2 \pi \epsilon_{0} r}=\frac{\lambda}{2 \pi \epsilon_{0} r}$ for the field outside the metal rod.
(a) At $r=3.00 \mathrm{~cm}, \quad \overrightarrow{\mathrm{E}}=0$
(b) At $r=10.0 \mathrm{~cm}$,

$$
\begin{aligned}
\overline{\mathrm{E}} & =\frac{30.0 \times 10^{-9} \mathrm{C}}{2 \pi\left(8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2}\right)(0.100 \mathrm{~m})} \\
& =5400 \mathrm{~N} / \mathrm{C}, \text { outward }
\end{aligned}
$$

(c) $E=\frac{k_{e} q}{R^{2}}=\frac{\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(26.0 \times 10^{-6} \mathrm{C}\right)}{(0.140 \mathrm{~m})^{2}}$
$=11.9 \mathrm{MN} / \mathrm{C}$ away
$V=\frac{k_{e} q}{R}=1.67 \mathrm{MV}$

Note: For (a) and (b), the given r's may vary.

$$
V=\frac{k_{e} q}{R}=\frac{\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(26.0 \times 10^{-6} \mathrm{C}\right)}{0.200 \mathrm{~m}}=1.17 \mathrm{MV}
$$

(c) At $r=100 \mathrm{~cm}$,

$$
\begin{aligned}
\overrightarrow{\mathrm{E}} & =\frac{30.0 \times 10^{-9} \mathrm{C}}{2 \pi\left(8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2}\right)(1.00 \mathrm{~m})} \\
& =540 \mathrm{~N} / \mathrm{C}, \text { outward }
\end{aligned}
$$

(a) At the center of the sphere, the total charge is zero, so

$$
E=\frac{k_{e} Q r}{a^{3}}=0
$$

(b) At a distance of $10.0 \mathrm{~cm}=0.100 \mathrm{~m}$ from the center,

$$
\begin{aligned}
E & =\frac{k_{e} Q r}{a^{3}}=\frac{\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}\right)\left(26.0 \times 10^{-6} \mathrm{C}\right)(0.100 \mathrm{~m})}{(0.400 \mathrm{~m})^{3}} \\
& =365 \mathrm{kN} / \mathrm{C}
\end{aligned}
$$

(c) At a distance of $40.0 \mathrm{~cm}=0.400 \mathrm{~m}$ from the center, all of the charge is enclosed, so

$$
\begin{aligned}
E & =\frac{k_{e} Q}{r^{2}}=\frac{\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}\right)\left(26.0 \times 10^{-6} \mathrm{C}\right)}{(0.400 \mathrm{~m})^{2}} \\
& =1.46 \mathrm{MN} / \mathrm{C}
\end{aligned}
$$

(d) At a distance of $60.0 \mathrm{~cm}=0.600 \mathrm{~m}$ from the center,

$$
\begin{aligned}
E & =\frac{k_{e} Q}{r^{2}}=\frac{\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}\right)\left(26.0 \times 10^{-6} \mathrm{C}\right)}{(0.600 \mathrm{~m})^{2}} \\
& =649 \mathrm{kN} / \mathrm{C}
\end{aligned}
$$

The direction for each electric field is radially outward

Note: charge values may vary.
(a) Inside surface: consider a cylindrical gaussian surface of arbitrary length ℓ within the metal. Since E inside the conducting shell is zero, the total charge inside the gaussian surface must be zero:

$$
\oint \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=\frac{q_{\text {in }}}{\epsilon_{0}} \quad \rightarrow \quad 0=\frac{\left(\lambda+\lambda_{\text {inner }}\right) \ell}{\epsilon_{0}}
$$

so $\quad \lambda_{\text {inner }}=-\lambda$.
(b) Outside surface: consider a cylindrical gaussian surface of arbitrary length ℓ outside the metal. The total charge within the gaussian surface is

$$
\begin{aligned}
& q_{\text {wire }}+q_{\text {cylinder }}=q_{\text {wire }}+\left(q_{\text {inner surface }}+q_{\text {outer surface }}\right) \\
& \lambda \ell+2 \lambda \ell=\lambda \ell+\left(-\lambda \ell+\lambda_{\text {outer }} \ell\right) \quad \rightarrow \quad \lambda_{\text {outer }}=3 \lambda
\end{aligned}
$$

(c) Gauss's law:

$$
\begin{aligned}
& \oint \overrightarrow{\mathrm{E}} \cdot d \overline{\mathrm{~A}}=\frac{q_{\text {in }}}{\epsilon_{0}} \\
& E 2 \pi r \ell=\frac{3 \lambda \ell}{\epsilon_{0}} \quad \rightarrow \quad E=2 \frac{3 \lambda}{4 \pi \epsilon_{0} r}=6 k_{e} \frac{\lambda}{r}, \text { radially outward }
\end{aligned}
$$

