Prb. \#

ANSWERS

1
(a) $Q=C \Delta V=\left(4.00 \times 10^{-6} \mathrm{~F}\right)(12.0 \mathrm{~V})=4.80 \times 10^{-5} \mathrm{C}=48.0 \mu \mathrm{C}$
(b) $Q=C \Delta V=\left(4.00 \times 10^{-6} \mathrm{~F}\right)(1.50 \mathrm{~V})=6.00 \times 10^{-6} \mathrm{C}=6.00 \mu \mathrm{C}$

Note: Throughout this assignment, the given values of certain parameters, such as C and V , may vary

2 (a) $C=\frac{\kappa \epsilon_{0} A}{d}=\frac{(1.00)\left(8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{m}^{2}\right)\left(2.30 \times 10^{-4} \mathrm{~m}^{2}\right)}{1.50 \times 10^{-3} \mathrm{~m}}$
$=1.36 \times 10^{-12} \mathrm{~F}=1.36 \mathrm{pF}$
(b) $Q=C \Delta V=(1.36 \mathrm{pF})(12.0 \mathrm{~V})=16.3 \mathrm{pC}$
(c) $E=\frac{\Delta V}{d}=\frac{12.0 \mathrm{~V}}{1.50 \times 10^{-3} \mathrm{~m}}=8.00 \times 10^{3} \mathrm{~V} / \mathrm{m}$

3
(a) For a spherical capacitor with inner radius a and outer radius b,

(c) Solution to What If?

Set the capacitance of a cylindrical capacitor, given by $C=\frac{\ell}{2 k_{e} \ln \left(\frac{b}{a}\right)}$, equal to that of a spherical capacitor, given by $c=\frac{a b}{k_{e}(b-a)}$, and solve for the length of the cylindrical capacitor.

$$
C_{\text {cylinder }}=C_{\text {sphere }} \rightarrow \frac{\ell}{2 k_{e} \ln \left(\frac{b}{a}\right)}=\frac{a b}{k_{e}(b-a)} \rightarrow \ell=\frac{2 a b}{(b-a)} \ln \left(\frac{b}{a}\right)
$$

$\ell=\frac{2(6.70 \mathrm{~cm})(15.0 \mathrm{~cm})}{(15.0 \mathrm{~cm}-6.70 \mathrm{~cm})} \mathrm{n}\left(\frac{15.0 \mathrm{~cm}}{6.70 \mathrm{~cm}}\right)=19.5 \mathrm{~cm}$
(a) When connected in series, the equivalent capacitance is

$$
\begin{aligned}
& \frac{1}{C_{\mathrm{eq}}}=\frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{2}} \text {, or } \\
& \quad \frac{1}{\mathrm{C}_{\mathrm{eq}}}=\frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{2}}=\frac{1}{4.20 \mu \mathrm{~F}}+\frac{1}{8.50 \mu \mathrm{~F}} \rightarrow \mathrm{C}_{\mathrm{eq}}=2.81 \mu \mathrm{~F}
\end{aligned}
$$

(b) When connected in parallel, the equivalent capacitance is

$$
C_{\mathrm{eq}}=\mathrm{C}_{1}+C_{2}=4.20 \mu \mathrm{~F}+8.50 \mu \mathrm{~F}=12.70 \mu \mathrm{~F}
$$

(a) $C=\frac{\kappa \epsilon_{0} A}{d}=\frac{2.10\left(8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}\right)\left(1.75 \times 10^{-4} \mathrm{~m}^{2}\right)}{4.00 \times 10^{-5} \mathrm{~m}}=8.13 \times 10^{-11} \mathrm{~F}$

$$
=81.3 \mathrm{pF}
$$

(b) $\Delta V_{\text {max }}=E_{\max } d=\left(60.0 \times 10^{6} \mathrm{~V} / \mathrm{m}\right)\left(4.00 \times 10^{-5} \mathrm{~m}\right)=2.40 \mathrm{kV}$
(a) First, we replace the parallel combination between points b and c by its equivalent capacitance,
$C_{\mathrm{bc}}=2.00 \mu \mathrm{~F}+6.00 \mu \mathrm{~F}=8.00 \mu \mathrm{~F}$. Then, we have three capacitors in series between points a and d . The equivalent capacitance for this circuit is therefore

$$
\frac{1}{C_{\infty}}=\frac{1}{C_{\nu}}+\frac{1}{C_{\mathrm{bc}}}+\frac{1}{C_{\mathrm{cd}}}=\frac{3}{8.00 \mu \mathrm{~F}}
$$

ANS. FIG. P26. 26
giving

$$
\mathrm{C}_{\mathrm{eq}}=\frac{8.00 \mu \mathrm{~F}}{3}=2.67 \mu \mathrm{~F}
$$

(b) The charge on each capacitor in the series is the same as the charge on the equivalent capacitor:

$$
Q_{a b}=Q_{b c}=Q_{\mathrm{ad}}=C_{\mathrm{eq}}\left(\Delta V_{\mathrm{ad}}\right)=(2.67 \mu \mathrm{~F})(9.00 \mathrm{~V})=24.0 \mu \mathrm{C}
$$

Then, note that $\Delta V_{\mathrm{bc}}=\frac{Q_{\mathrm{bc}}}{C_{\mathrm{bc}}}=\frac{24.0 \mu \mathrm{C}}{8.00 \mu \mathrm{~F}}=3.00 \mathrm{~V}$. The charge on each capacitor in the original circuit is: On the $8.00 \mu \mathrm{~F}$ between a and b :

$$
Q_{8}=Q_{a b}=24.0 \mu \mathrm{C}
$$

On the $8.00 \mu \mathrm{~F}$ between c and d :

$$
Q_{8}=Q_{\mathrm{cd}}=24.0 \mu \mathrm{C}
$$

On the $2.00 \mu \mathrm{~F}$ between b and c :

$$
Q_{2}=C_{2}\left(\Delta V_{\text {bc }}\right)=(2.00 \mu \mathrm{~F})(3.00 \mathrm{~V})=6.00 \mu \mathrm{C}
$$

On the $6.00 \mu \mathrm{~F}$ between b and c :

$$
Q_{6}=C_{6}\left(\Delta V_{\text {bc }}\right)=(6.00 \mu \mathrm{~F})(3.00 \mathrm{~V})=18.0 \mu \mathrm{C}
$$

(c) We earlier found that $\Delta V_{\mathrm{bc}}=3.00 \mathrm{~V}$. The two $8.00 \mu \mathrm{~F}$ capacitors have the same voltage: $\Delta V_{8}=\Delta V_{8}=\frac{Q}{\mathrm{C}}=\frac{24.0 \mu \mathrm{C}}{8.00 \mu \mathrm{~F}}=3.00 \mathrm{~V}$, so we conclude that the potential difference across each capacitor is the same: $\Delta V_{8}=\Delta V_{2}=\Delta V_{6}=\Delta V_{8}=3.00 \mathrm{~V}$.
(a) We simplify the circuit of Figure P26.23 in three steps as shown in ANS. FIG. P26.23 panels (a), (b), and (c). First, the $15.0-\mu \mathrm{F}$ and $3.00-\mu \mathrm{F}$ capacitors in series are equivalent to

$$
\frac{1}{(1 / 15.0 \mu \mathrm{~F})+(1 / 3.00 \mu \mathrm{~F})}=2.50 \mu \mathrm{~F}
$$

Next, the $2.50-\mu \mathrm{F}$ capacitor combines in parallel with the $6.00-\mu \mathrm{F}$ capacitor, creating an equivalent capacitance of $8.50 \mu \mathrm{~F}$. At last, this $8.50-\mu \mathrm{F}$ equivalent capacitor and the $20.0-\mu \mathrm{F}$ capacitor are in series, equivalent to
$\frac{1}{(1 / 8.50 \mu \mathrm{~F})+(1 / 20.00 \mu \mathrm{~F})}=5.96 \mu \mathrm{~F}$
(b) We find the charge on each capacitor and the voltage across each by working backwards through solution figures (c)-(a), alternately applying $Q=C \Delta V$ and $\Delta V=Q / C$ to every capacitor, real or equivalent. For the $5.96-\mu \mathrm{F}$ capacitor, we have

$$
\begin{aligned}
Q & =C \Delta V=(5.96 \mu \mathrm{~F})(15.0 \mathrm{~V}) \\
& =89.5 \mu \mathrm{C}
\end{aligned}
$$

(a)

(b)

(c)

ANS. FIG. P26. 23

Thus, if a is higher in potential than b, just $89.5 \mu \mathrm{C}$ flows between the wires and the plates to charge the capacitors in each picture. In (b) we have, for the $8.5-\mu \mathrm{F}$ capacitor,

$$
\Delta V_{\alpha c}=\frac{Q}{\mathrm{C}}=\frac{89.5 \mu \mathrm{C}}{8.50 \mu \mathrm{~F}}=10.5 \mathrm{~V}
$$

and for the $20.0-\mu \mathrm{F}$ capacitor in (b), (a), and the original circuit, we have $Q_{20}=89.5 \mu \mathrm{C}$. Then

$$
\Delta V_{\phi}=\frac{Q}{\mathrm{C}}=\frac{89.5 \mu \mathrm{C}}{20.0 \mu \mathrm{~F}}=4.47 \mathrm{~V}
$$

Next, the circuit in diagram (a) is equivalent to that in (b), so $\Delta V_{\text {d }}=4.47 \mathrm{~V}$ and $\Delta V_{\text {ac }}=10.5 \mathrm{~V}$.
For the $2.50-\mu \mathrm{F}$ capacitor, $\Delta V=10.5 \mathrm{~V}$ and

$$
Q=C \Delta V=(2.50 \mu \mathrm{~F})(10.5 \mathrm{~V})=26.3 \mu \mathrm{C}
$$

For the $6.00-\mu \mathrm{F}$ capacitor, $\Delta V=10.5 \mathrm{~V}$ and

$$
Q_{6}=C \Delta V=(6.00 \mu \mathrm{~F})(10.5 \mathrm{~V})=63.2 \mu \mathrm{C}
$$

Now, $26.3 \mu \mathrm{C}$ having flowed in the upper parallel branch in (a), back in the original circuit we have $Q_{15}=26.3 \mu \mathrm{C}$ and $Q_{3}=26.3 \mu \mathrm{C}$.
(a) $U_{E}=\frac{1}{2} C(\Delta V)^{2}=\frac{1}{2}(3.00 \mu \mathrm{~F})(12.0 \mathrm{~V})^{2}=216 \mu \mathrm{~J}$
(b) $U_{E}=\frac{1}{2} C(\Delta V)^{2}=\frac{1}{2}(3.00 \mu \mathrm{~F})(6.00 \mathrm{~V})^{2}=54.0 \mu \mathrm{~J}$

From $U_{E}=\frac{1}{2} C \Delta V^{2}$, we have

$$
\mathrm{U}_{\mathrm{E}}=\frac{1}{2}\left(31.8 \times 10^{-6} \mathrm{~F}\right)\left(4.35 \times 10^{3} \mathrm{~V}\right)^{2}=301 \mathrm{~J}
$$

(a) The equivalent capacitance of a series combination of C_{1} and C_{2} is

$$
\frac{1}{C_{\mathrm{eq}}}=\frac{1}{\mathrm{C}_{1}}+\frac{1}{C_{2}}=\frac{1}{18.0 \mu \mathrm{~F}}+\frac{1}{36.0 \mu \mathrm{~F}} \rightarrow C_{\mathrm{eq}}=12.0 \mu \mathrm{~F}
$$

(b) This series combination is connected to a $12.0-\mathrm{V}$ battery, the total stored energy is

$$
U_{E, \text { eq }}=\frac{1}{2} C_{\mathrm{eqq}}(\Delta V)^{2}=\frac{1}{2}\left(12.0 \times 10^{-6} \mathrm{~F}\right)(12.0 \mathrm{~V})^{2}=8.64 \times 10^{-4} \mathrm{~J}
$$

(c) Capacitors in series carry the same charge as their equivalent capacitor. The charge stored on each of the two capacitors in the series combination is

$$
\begin{aligned}
Q_{1} & =Q_{2}=Q_{\text {total }}=C_{\text {eq }}(\Delta V)=(12.0 \mu \mathrm{~F})(12.0 \mathrm{~V}) \\
& =144 \mu \mathrm{C}=1.44 \times 10^{-4} \mathrm{C}
\end{aligned}
$$

and the energy stored in each of the individual capacitors is: $18.0 \mu \mathrm{~F}$ capacitor:

$$
U_{E 1}=\frac{Q_{1}^{2}}{2 C_{1}}=\frac{\left(1.44 \times 10^{-4} \mathrm{C}\right)^{2}}{2\left(18.0 \times 10^{-6} \mathrm{~F}\right)}=5.76 \times 10^{-4} \mathrm{~J}
$$

$36.0 \mu \mathrm{~F}$ capacitor:

$$
U_{E 2}=\frac{Q_{2}^{2}}{2 C_{2}}=\frac{\left(1.44 \times 10^{-4} \mathrm{C}\right)^{2}}{2\left(36.0 \times 10^{-6} \mathrm{~F}\right)}=2.88 \times 10^{-4} \mathrm{~J}
$$

(d)
$U_{51}+U_{\Sigma 2}=5.76 \times 10^{-4} \mathrm{~J}+2.88 \times 10^{-4} \mathrm{~J}=8.64 \times 10^{-4} \mathrm{~J}=U_{E, \text { aq, }}$
which is one reason why the $12.0 \mu \mathrm{~F}$ capacitor is considered
to be equivalent to the two capacitors.
(e)

The total energy of the equivalent capacitance will always equal the sum of the energies stored in the individual capacitors.
(f) If C_{1} and C_{2} were connected in parallel rather than in series, the equivalent capacitance would be $C_{\text {eq }}=C_{1}+C_{2}=18.0 \mu \mathrm{~F}+36.0 \mu \mathrm{~F}$ $=54.0 \mu \mathrm{~F}$. If the total energy stored in this parallel combination is to be the same as stored in the original series combination, it is necessary that

$$
\frac{1}{2} C_{\text {eq }}(\Delta V)^{2}=U_{E, e q}
$$

From which we obtain

$$
\Delta V=\sqrt{\frac{2 U_{E, \text { eq }}}{C_{\text {eq }}}}=\sqrt{\frac{2\left(8.64 \times 10^{-4} \mathrm{~J}\right)}{54.0 \times 10^{-6} \mathrm{~F}}}=5.66 \mathrm{~V}
$$

(g) Because the potential difference is the same across the two capacitors when connected in parallel, and $U_{E}=\frac{1}{2} C(\Delta V)^{2}$,
the larger capacitor C_{2} stores more energy.

