Prb. \#
1 If N is the number of protons, each with charge e, that hit the target in time Δt, the average current in the beam is $I=\Delta Q / \Delta t=N e / \Delta t$, giving

$$
N=\frac{I(\Delta t)}{e}=\frac{\left(125 \times 10^{-6} \mathrm{C} / \mathrm{s}\right)(23.0 \mathrm{~s})}{1.60 \times 10^{-19} \mathrm{C} / \text { proton }}=1.80 \times 10^{16} \text { protons }
$$

ANSWERS

Note: The given numerical values for certain variables in this assignment may vary.

2
(a) $J=\frac{I}{A}=\frac{5.00 \mathrm{~A}}{\pi\left(4.00 \times 10^{-3} \mathrm{~m}\right)^{2}}=99.5 \mathrm{kA} / \mathrm{m}^{2}$
(b) Current is the same.
(c) The cross-sectional area is greater; therefore the current density is smaller.
(d) $A_{2}=4 A_{1}$ or $\pi r_{2}^{2}=4 \pi r_{1}^{2}$ so $r_{2}=2 r_{1}=0.800 \mathrm{~cm}$.
(e) $\quad I=5.00 \mathrm{~A}$
(f) $J_{2}=\frac{1}{4} J_{1}=\frac{1}{4}\left(9.95 \times 10^{4} \mathrm{~A} / \mathrm{m}^{2}\right)=2.49 \times 10^{4} \mathrm{~A} / \mathrm{m}^{2}$

3 To find the total charge passing a point in a given amount of time, we use $I=\frac{d q}{d t}$, from which we can write

$$
\begin{aligned}
& q=\int d q=\int I d t=\int_{0}^{1 / 200 s}(100 \mathrm{~A}) \sin \left(\frac{120 \pi t}{\mathrm{~s}}\right) d t \\
& q=\frac{-100 \mathrm{C}}{120 \pi}\left[\cos \left(\frac{\pi}{2}\right)-\cos 0\right]=\frac{+100 \mathrm{C}}{120 \pi}=0.265 \mathrm{C}
\end{aligned}
$$

From Equation 27.7, we obtain
(b) From $I R_{\text {eq }}=I_{1} R_{1}+I_{2} R_{2} \rightarrow R_{\text {eq }}=R_{1}+R_{2}$, with $\Delta V=230 \mathrm{~V}$, we obtain
(a) $I=\frac{\Delta V}{R}=\frac{120 \mathrm{~V}}{240 \Omega}=0.500 \mathrm{~A}=500 \mathrm{~mA}$ $I=\frac{\Delta V}{R}=\frac{115 \mathrm{~V}}{235 \Omega}=0.489 \mathrm{~A}=489 \mathrm{~mA}$

Using $R=\frac{\rho_{L}}{A}$ and data from Table 27.2, we have

$$
R A=\text { constant }=\rho_{W} L_{W}=\rho_{\mathrm{Fe}} \mathrm{~L}_{\mathrm{Fe}} .
$$

which yields

$$
\frac{L_{\mathrm{W}}}{L_{\mathrm{Fe}}}=\frac{\rho_{\mathrm{Fe}}}{\rho_{\mathrm{W}}}=\frac{10.0 \times 10^{-8} \Omega \cdot \mathrm{~m}}{5.60 \times 10^{-8} \Omega \cdot \mathrm{~m}}=1.79 .
$$

(a) From $R=\rho L / A$, the initial resistance of the mercury is

$$
R_{i}=\frac{\rho L_{i}}{A_{i}}=\frac{\rho L_{i}}{\pi d_{i}^{2} / 4}=\frac{\left(9.58 \times 10^{-7} \Omega \cdot \mathrm{~m}\right)(1.0000 \mathrm{~m})}{\pi\left(1.00 \times 10^{-3} \mathrm{~m}\right)^{2} / 4}=1.22 \Omega
$$

	(b) Since the volume of mercury is constant, $V=A_{f} \cdot L_{f}=A_{i} \cdot L_{i}$ gives the final cross-sectional area as $A_{f}=A_{i} \cdot\left(L_{i} / L_{f}\right)$. Thus, the final $\frac{\Delta R}{R}=\frac{R_{f}-R_{i}}{R_{i}}=\frac{R_{f}}{R_{i}}-1=\frac{\rho L_{f}^{2} /\left(A_{i} \cdot L_{i}\right)}{\rho L_{i} / A_{i}}-1=\left(\frac{L_{f}}{L_{i}}\right)^{2}-1$ resistance is given by $R_{f}=\frac{\rho L_{f}}{A_{f}}=\frac{\rho L_{f}^{2}}{A_{i} \cdot L_{i}}$. The fractional change in $\frac{\Delta R}{R}=\left(\frac{100.0400 \mathrm{~cm}}{100.0000 \mathrm{~cm}}\right)^{2}-1=8.00 \times 10^{-4}$ increase the resistance is then
7	(a) From Equation 27.21, $P=I \Delta V \rightarrow I=P / \Delta V=\left(1.00 \times 10^{3} \mathrm{~W}\right) /(120 \mathrm{~V})=8.33 \mathrm{~A}$ (b) From Equation 27.23, $P=\Delta V^{2} / R \rightarrow R=\Delta V^{2} / P=(120 \mathrm{~V})^{2} /\left(1.00 \times 10^{3} \mathrm{~W}\right)=14.4 \Omega$
8	From Equation 27.21, $P=I \Delta V=500 \times 10^{-6} \mathrm{~A}\left(15 \times 10^{3} \mathrm{~V}\right)=7.50 \mathrm{~W}$
9	(a) The total energy stored in the battery is $\begin{aligned} \Delta U_{\mathrm{E}} & =q(\Delta V)=\operatorname{It}(\Delta V) \\ & =(55.0 \mathrm{~A} \cdot \mathrm{~h})(12.0 \mathrm{~V})\left(\frac{1 \mathrm{C}}{1 \mathrm{~A} \cdot \mathrm{~s}}\right)\left(\frac{1 \mathrm{~J}}{1 \mathrm{~V} \cdot \mathrm{C}}\right)\left(\frac{1 \mathrm{~W} \cdot \mathrm{~s}}{1 \mathrm{~J}}\right) \\ & =660 \mathrm{~W} \cdot \mathrm{~h}=0.660 \mathrm{kWh} \end{aligned}$ (b) The value of the electricity is $\text { Cost }=(0.660 \mathrm{kWh})\left(\frac{\$ 0.110}{1 \mathrm{kWh}}\right)=\$ 0.0726$

