A particle in the harmonic oscillator potential has the initial wave function

$$\Psi(x,0) = A[u_0(x) + u_1(x)]$$

for some constant, A.

- (a) Normalize $u_0(x)$.
- (b) Use the raising operator to get $u_1(x)$.
- (c) Normalize $\Psi(x,0)$.
- (d) Find $\Psi(x,t)$ and $|\Psi(x,t)|^2$
- (e) Find the expectation value of x as a function of time. Notice that it oscillates sinusoidally. What is the amplitude of oscillation? What is the (angular) frequency?
- (f) Use your result in (e) to determine . Check that Ehrenfast's equation,

$$d /dt = - < dV/dx >$$
,

holds for this wave function.

(g) Graph/animate $|\Psi(x,t)|^2$ from t=0 to $t=(4\pi/\omega)$ using Maple. You can use the one for the double well as a template.