A particle in the harmonic oscillator potential has the initial wave function
\[\Psi(x,0) = A[u_0(x) + u_1(x)] \]
for some constant, A.

(a) Normalize \(u_0(x) \).
(b) Use the raising operator to get \(u_1(x) \).
(c) Normalize \(\Psi(x,0) \).
(d) Find \(\Psi(x,t) \) and \(|\Psi(x,t)|^2 \).
(e) Find the expectation value of x as a function of time. Notice that it oscillates sinusoidally. What is the amplitude of oscillation? What is the (angular) frequency?
(f) Use your result in (e) to determine \(\langle p \rangle \). Check that Ehrenfest’s equation,
\[\frac{d\langle p \rangle}{dt} = -\langle \frac{dV}{dx} \rangle, \]
holds for this wave function.
(g) Graph/animate \(|\Psi(x,t)|^2 \) from \(t = 0 \) to \(t = (4\pi/\omega) \) using Maple. You can use the one for the double well as a template.