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The absence of a general theory of plant population dynamics remains a critical 
gap in the field of plant population biology today. This is in contrast with animal 
population biology where a population dynamic theory is well developed and 
integrated into the field. Two attributes of plants are commonly cited as obstacles 
to the development of population dynamic models. First, plants are sessile and 
tend to interact primarily with nearby individuals. Thus the survivorship and 
fecundity of a plant are likely to be affected more by local population density than 
by the average density of the population. In this paper we deal exclusively with 
nonvegetatively reproducing species and so there is no ambiguity associated with 
the word "individual" (Harper 1977). The second is plastic growth such that the 
sizes or fecundities of adults may vary by several orders of magnitude. Population 
dynamic models that explicitly account for these two qualities of plants include 
both the spatial distribution of individuals and the effects of local population 
density on individual survivorship and fecundity. Such models are termed neigh- 
borhood models (Antonovics and Levin 1980). Although the development of a 
neighborhood population dynamic theory has been repeatedly called for in the 
ecological literature (Palmblad 1968; Werner 1976; Antonovics and Levin 1980; 
Weiner and Conte 1981), published models of plant population dynamics have 
excluded either plastic growth or the fact that plants interact primarily with 
nearby plants or both (DeAngelis et al. 1979; Watkinson 1980; MacDonald and 
Watkinson 1981; Weiner and Conte 1981; Tilman 1982). Schaffer and Leigh (1976) 
claim that the analysis of neighborhood models involves intractable mathematics 
associated with nonlinear diffusion equations in two spatial dimensions. They thus 
conclude that there may never be an adequate population dynamic theory for 
plants. 

The purpose of this paper is to present a tractable formulation for neighborhood 
models of plant population dynamic processes. We specifically describe models 
for single-species populations of annuals lacking seed dormancy. Our approach, 
however, can be extended to include such complexities as seed dormancy, multi- 
species populations, and age- or size-structured populations. We have developed 
two kinds of models: analytically tractable models that are valid when seed 
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dispersal is sufficiently large, and computer simulation models that are more 
general. These models are constructed from submodels of the survivorship, fecun- 
dity and dispersal of individual plants, and so provide descriptions of population- 
level processes in terms of the biology of individuals. Moreover, we have de- 
signed the models so that empirical tests are both possible and practical. All 
parameters and functional forms in a model may be estimated from experimental 
data collected during a single year. An empirically calibrated model may then be 
tested directly, by comparing the model's predictions with the results of a popula- 
tion dynamic perturbation experiment. 

This paper is divided into five sections. In the first section, we briefly describe 
the submodels of individual plants from which we construct population dynamic 
models. In the second section, we present the computer models and, in the third, 
we derive and examine the analytical models. We also illustrate how these models 
may be used to address specific issues in plant ecology such as the relation 
between the shapes of a yield versus sowing-density curves and the dynamical 
behavior of plant populations. Finally, in the fourth and fifth sections, we describe 
how the models may be empirically tested and discuss how studies that combine 
neighborhood modeling with descriptive and experimental work can contribute to 
our understanding of the ecology of plants. 

PREDICTORS FOR INDIVIDUAL PLANTS 

Each of our population dynamic models is based on three submodels: a fecun- 
dity predictor, a survivorship predictor, and a dispersal predictor. To describe the 
first two predictors, we must first define the concept of an ecological neighbor- 
hood. A neighborhood may be defined generally as the area about a plant cir- 
cumscribing all other individuals that interact with the plant. We approximate a 
plant's ecological neighborhood here as a circle with the plant at its center. Other 
plants within the circle are called neighbors (or neighboring plants) of the center 
plant. 

We discuss two kinds of fecundity predictors. Seedling fecundity predictors 
(abbreviated SFP) predict the future seed set of a seedling as a function of the 
number and spatial arrangement of neighboring seedlings. Adult fecundity predic- 
tors (abbreviated AFP) give the seed set of an adult plant as a function of the 
number and spatial arrangement of neighboring adults. A population dynamic 
model contains a single fecundity predictor, either an AFP or an SFP. Survivor- 
ship predictors give the probability that an individual seedling survives to adult- 
hood as a function of the number and spatial distribution of neighboring seedlings. 
Dispersal predictors predict the dispersal pattern of a plant's seedling progeny and 
the survivorship of plants from seed to seedling. 

Given a survivorship, fecundity, and dispersal predictor, we can predict the fate 
of any individual plant through its life cycle. Beginning with a seed, we can predict 
whether or not the seed germinates and where it germinates with the dispersal 
predictor. We can predict whether or not a seedling survives to adulthood with the 
survivorship predictor. Finally, we can determine how many seeds an adult plant 
produces with the fecundity predictor. 
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Survivorship, fecundity, and dispersal predictors have appeared in the ecolog- 
ical literature (Mack and Harper 1977; Weiner 1982; Watkinson et al. 1983; and 
others reviewed in Harper 1977 and Silvertown 1982) and are defined empirically, 
as least-squares fits to experimental data. Before we discuss the computer models 
in detail, we briefly describe the experiments and statistical methods necessary to 
develop predictors, give some examples of predictors, and explain why there are 
two kinds of fecundity predictors. For a more complete treatment of this subject, 
see Silander and Pacala (1985). 

Seedling Fecundity Predictors 

To produce an SFP, the following data are collected: (1) the x- and y-grid 
coordinates on an experimental plot for each seedling at the beginning of the 
season and each adult at the end of the season, and (2) the number of seeds 
produced by each adult. One then calculates a neighborhood circle around each 
seedling and an index of crowding for each neighborhood. This index may be as 
simple as the number of neighboring seedlings or may include such complexities 
as distance from the center seedling to each neighbor, angular dispersion of 
neighbors, initial seedling size and/or germination date. 

An SFP is a function that predicts the future seed set of a seedling from a 
crowding index for that seedling's neighborhood. For example, in figure 1 we plot 
adult seed set versus number of seedling neighbors. Each point represents a single 
Arabidapsis thaliana plant grown from broadcast seed in greenhouse flats during 
1983. The line in the figure is a nonlinear least-squares fit (Marquardt algorithm) of 
a fecundity predictor to these data. Here, the predictor is M!(1 + cnT), where n is 
the number of neighboring seedlings, and M, T, and c are estimated constants. 
The parameter M may be interpreted as the number of seeds produced by a plant 
with no neighbors; c and T are decay constants. 

In figure 1 the neighborhood radius is 4 cm. This value was chosen because it 
produced an SFP with a smaller residual variance than larger (6, 7, 8, 9, 10) or 
smaller (0.5, 1, 2, 3) radii. In general, the neighborhood radius used in the 
statistical analysis is chosen so as to minimize residual variance. 

The SFP in figure 1 accounts for 77% of the variation in seed set. The unex- 
plained variation in an SFP regression summarizes both density-independent 
factors that affect the fecundity of an individual and density-dependent factors not 
accounted for by the predictor. 

Adult Fecundity Predictors 

The only difference between AFPs and SFPs is that the crowding index in the 
former summarizes the number and spatial arrangement of adult neighbors rather 
than the number and arrangement of seedling neighbors. Thus, the only data 
required to produce an AFP are the x- and y-coordinates of all adult plants and the 
number of seeds produced by each plant. Figure 2 illustrates an AFP for 
Arabidopsis thaliana that accounts for 80% of the variation in seed set. This 
predictor is M!(1 + cnT), where n is the number of adult neighbors, and M and c 
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FIG. 2.-AFP for Arabidopsis thaliana. 

are as before. Mack and Harper (1977) developed AFPs that accounted for up to 
69% of the variation in a study of four species of dune annuals. Weiner (1982) 
developed AFPs for two species of alpine annuals that accounted for 82% and 86% 
of the variation in seed set. For examples of AFPs that include the distance to 
each neighbor and the spatial distribution of neighbors, see Silander and Pacala 
(1985) or Mack and Harper (1977). 

There are two reasons why we consider two different types of fecundity predic- 
tors. First, both AFPs and SFPs have appeared in the literature and both seem to 
work. Second, the relative accuracy of SFPs and AFPs may depend on the time 
course of mortality. For example, if seedling mortality is heavy and adult mortal- 
ity is light, then AFPs may provide better statistical fits than SFPs. However, if 
the reverse is true, then SFPs may prove more accurate than AFPs. In our study 
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of A. thaliana, mortality was less than 25% and AFPs are only slightly more 
accurate than SFPs. 

Survivorship Predictors 

We define a survivorship predictor as a function that predicts the probability 
that a seedling survives to adulthood, from an index of crowding for that seed- 
ling's neighborhood. Thus a survivorship predictor may be obtained from the 
same data set used to produce an SFP. After an index of crowding is calculated for 
each seedling's neighborhood, the data are arranged into a discrete number of 
classes. Each class represents a different mean level of crowding. The data are 
then graphed, with the mean index of crowding for each class on the horizontal 
axis, and the fraction of plants in each class that survives to adulthood on the 
vertical axis (see Watkinson et al. 1983). A survivorship predictor is obtained by 
fitting a function to these data statistically. 

An example of a survivorship predictor is Be-an, where B and a are estimated 
constants and n is the number of seedling neighbors. The parameter B may be 
interpreted as the probability of survival for a seedling with no neighbors; the 
parameter a is simply a decay constant. The neighborhood radius for a survivor- 
ship predictor, like the radius for a fecundity predictor, is chosen so as to 
minimize the residual variance. A plant species may have different radii for its 
survivorship.and fecundity predictors. 

Dispersal Predictors 

A dispersal predictor predicts the number and spatial location of seedlings 
produced by a mother plant, given the location and seed set of the mother plant. A 
dispersal predictor is obtained as a statistical fit to a data set, which contains the 
locations and seed sets of several parental plants together with the number and 
locations of each plant's seedling progeny. Simple dispersal predictors consist of 
two parts: an estimate of survivorship from seed to seedling (germination success) 
and a probability density function for the distance between a seedling and its 
mother (a dispersal function). Additional complexities may be included if war- 
ranted. For example, suppose that smaller seeds are produced by competitively 
stressed plants. In this case, the germination success of seeds produced by a plant 
might depend on an index of crowding for the plant, or on the number of seeds 
produced by the plant. We could also account for nonrandom clumping of seed- 
lings that results from the existence of safe sites for germination or from the 
aggregation of seeds in depressions in the soil. Finally, we could include 
nonuniform directionality of seedfall resulting from wind or slope. 

To obtain a data set for dispersal predictors, one must be able to identify the 
maternal seedling progeny of individual plants. There are a variety of ways to 
accomplish this and we offer three techniques here. First, one could remove 
seeds, before they fall, from all plants in an area, except for the seeds of a single 
individual. Second, one could grow single plants of one species against a back- 
ground of a second species. Third, it is possible to chemically label plants with 
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unique radionuclides or rare earth elements. This tag is incorporated into seeds 
and can be detected in germinating seedlings (R. Primack, personal communica- 
tion). 

COMPUTER MODELS 

Consider a population of seedlings growing on a rectangular plot. A neighbor- 
hood computer model stores the x- and y-coordinates of these seedlings, calcu- 
lates a survivorship-predictor neighborhood circle around each seedling, and uses 
the survivorship predictor to determine whether or not each seedling survives. 
The computer then calculates fecundity predictor neighborhoods around each. 
surviving plant and uses the fecundity predictor to determine the number of seeds 
produced by each adult. If the model contains an AFP, then only living plants are 
counted as neighbors. However, if the model includes an SFP, then all plants 
(alive or dead) are counted as neighbors. Finally, we use the dispersal predictor to 
determine where each seed germinates and so obtain the spatial distribution of 
seedlings in the second generation. By repeating the above algorithm, we can 
proceed to the third generation and so on. 

In addition to the three predictors we must also specify boundary conditions in 
a neighborhood computer model. Boundary conditions describe the fate of a seed 
that disperses out of a plot. In all examples described in this paper, boundaries are 
absorbing: seeds that leave the plot are "lost." The effect of absorbing boundaries 
is to decrease the population size within the plot, especially near the plot's 
borders. To reduce boundary effects, we typically focus on the population dynam- 
ics of the center portion of a modeled plot. This also reduces the "edge effect" 
caused by plants that are located within a neighborhood radius of the plot's edge. 
Edge plants, with incomplete neighborhoods, tend to have fewer neighbors and 
thus tend to have higher survivorship and fecundity. 

One way to mimic the dynamics of a portion of a large continuous plot is to 
make boundaries reflecting: seeds that hit the edge of the plot ricochet back into 
the plot. Reflecting boundaries require a suspension of one's biological intuition 
and do not eliminate edge effect. Nonetheless, in examples that we have consid- 
ered, the dynamics of small plants with reflecting boundaries are very similar to 
the dynamics of small subplots that are embedded in large plots with absorbing 
boundaries. Computer runs for small plots are relatively inexpensive, and so 
reflecting boundaries provide a way to lessen the cost of exploring a model. 

As Weiner and Conte (1981) have pointed out, one important technical problem 
has prevented the development of neighborhood computer models. Specifically, if 
the population of seedlings is large and any standard sorting algorithm is used, 
then a prohibitive amount of computer time is required to identify each plant's 
neighbors. Because population densities of seedlings are often 1000 per m2 or 
higher, a model of even a 10 m2 plot could contain over 10,000 plants. The model 
would have to sort these 10,000 items every generation. We have developed a 
sorting algorithm that is very fast because of the data structure used to store each 
plant's location: a two-dimensional array of linked lists (see Appendix A). With 
this algorithm, the computer time required by our model increases only linearly 
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with the area of the modeled plot. Below we present specific examples of neigh- 
borhood computer models. Some of these runs involved population sizes averag- 
ing over 10,000 for 20 generations, and yet required only 3 min of computer time 
(IBM 3081). 

To illustrate neighborhood computer models, we offer two groups of examples 
which differ markedly in their dynamical behaviors. All of these examples share 
the following attributes. (a) Plots are square and measure 33' r on a side, where r is 
the neighborhood radius of the fecundity predictor. (b) Boundaries are absorbing. 
(c) We report population densities only for the 13A r x 13A r subplot at the center 
of the 33' r X 33' r plot. The 10 r wide buffer zone effectively insulated this 
subplot from boundary and edge effects, because we observed no significant 
changes in the results when we increased the width of the buffer region to 13A r or 
decreased it to 6' r. (d) Each example was initiated with a random scatter of 200 
adult plants. (e) All runs were iterated for 25 generations. (f) All fecundity 
predictors are AFPs. (g) The dispersal predictor is as follows: The distance 
between a seedling and its mother is an exponential random variable with the 
mean equal to 4 r. Thus, on average, progeny will decrease exponentially in 
abundance with increasing distance from their mother. Also, germination success 
is 100% and progeny are equally likely to disperse in any direction. (h) Survivor- 
ship is density independent and so the survivorship predictor is a constant. To 
save computer time, we actually disperse only those seeds which survive to 
become adults. In other words, before seeds are dispersed, we multiply the 
number of seeds produced by each plant by the survivorship and round the 
resulting quantity to the nearest integer. 

The above list specifies all aspects of each example except for the forms of the 
AFP and the, values of the survivorship. 

Group I 

In these examples, the fecundity predictor is M!(1 + cn). Again, M and c are 
constants and n is the number of neighbors. This hyperbolic decay is a special 
case of the predictor in figure 2, and implies that the potential seed set of a plant 
(M) is divided among the plant and its neighbors. We present results for three runs 
with M equal to 10, 30, and 50. In all runs, the parameter c equals 0.9 and the 
survivorship equals 0.6. 

The population densities produced by each run are graphed in figure 3 (dashed 
lines). Densities are expressed as numbers of adult plants per neighborhood area. 
Notice that, in all three runs, density increases rapidly to a relatively steady state. 
The stochastic fluctuations in figure 3 are the result of the randomness of dispersal 
in the model. 

Group 2 

Here, the fecundity predictor is Qe-"', where Q and v are constants. The 
parameter Q may be interpreted as the number of seeds produced by a plant with 
no neighbors; v is a decay constant. This exponential form decays more rapidly 
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FIG. 3.-Results from the computer model runs in group 1 (dashed lines) and numerical 
solutions of analytical model (15) (solid lines). The parameters for both the analytical and 
computer model trajectories are: survivorship = 0.6, probability of germination = 1, c = 0.9, 
M 10, 30, and 50. The mean dispersal distance in the computer runs is 4 r. 

with increasing n than the hyperbolic form in group 1. It implies that each 
neighbor reduces the potential seed set of a plant by a constant fraction. Figure 4 
contains the results of three runs with Q equal to 10, 20, and 100; v equal to 0.2; 
and the survivorship equal to 0.2. Notice that when Q is 10 and 20, the population 
density of adult plants again increases rapidly to a relatively steady state. When Q 
is 100, however, population density changes in a very erratic manner and shows 
no tendency to settle into a steady state. 

The examples in figures 3 and 4 were chosen because they illustrate both the 
chief value and the chief shortcomings of neighborhood computer models. The 
chief value of these models is that they provide a way to determine the population 
dynamic consequences of specific fecundity, survivorship, and dispersal predic- 
tors. Because all three predictors may be obtained empirically, it should be 
possible to obtain population dynamic models for real monocultures of annuals 
growing in either the field or greenhouse. Moreover, computer models may be 
readily modified to include the inevitable complexities encountered in an empir- 
ical study. There are, however, two chief shortcomings of neighborhood com- 
puter models. First, it is difficult to explore a computer model fully to determine 
its complete repertoire of dynamical behavior. Thus, the model illustrated in 
figure 3 appears to be "well-behaved" for all values of M but we cannot be certain 
of this. Second, the predictions of a computer model may be difficult to under- 
stand in intuitive terms. For example, why does the model illustrated in figure 4 
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FIG. 4.-Results from the computer model runs in group 2. Parameter values are: sur vivor- 
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produce a smooth trajectory if Q = 10 or Q =20 and a highly erratic trajectory if 
Q = 100? To obviate the shortcomings of neighborhood computer models, we 
now explore an analytically tractable formulation. 

ANALYTICAL MODELS 

We have developed analytically tractable analogues of neighborhood computer 
models for cases in which the dispersal predictor has two characteristics. First, 
the location of each seedling is governed by the dispersal function: L(d~v). Here 
L(d~v) is the probability density function for the vector-valued location of a 
seedling u, given the location of the seedling's mother v. Notice that this probabil- 
ity density is a function solely of the distance, dov between a seedling and its 
mother. Second, the probability of germination is constant. 

Dispersal predictors that possess these two characteristics include a wide 
variety of biologically reasonable forms. For example, see the computer models 
that produced figures 3 and 4. The above characteristics, however, exclude some 
important cases. For example, if seeds aggregate in depressions in the soil, then 
the probability density for the location of a seedling will not be a function solely of 
the distance between the seedling and its mother. Rather, the locations of seed- 
lings will depend, in part, on the locations of soil depressions. Also, if there are 
safe sites for germination, then the probability of germination will depend on 
spatial location. Although it is possible to modify the methods described below to 
include complexities such as safe sites and nonuniform soil topography, we focus 
first on the simple case. 

Consider an infinite plane on which seedlings are growing. The spatial pattern of 
these seedlings will in general depend on the number and spatial distribution of 
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their parents, the number of seeds produced by each parent, the germination 
success, and the nature of seed dispersal. Because dispersal has a random compo- 
nent, the spatial pattern of seedlings is governed by a stochastic process. In 
Appendix B, we show that this stochastic process becomes a Poisson process in 
the limit as the mean dispersal distance (the mean distance between a seedling and 
its mother) becomes large. More specifically, we demonstrate the following in 
Appendix B: If the locations of seedlings in generation t are governed by a Poisson 
process and dispersal is sufficiently large, then the locations of seedlings in 
generation t + 1 are governed by a stochastic process that is approximately 
Poisson. The parameter of the Poisson process is simply the average population 
density of seeds on the plane. If St is the average population density of seeds in 
generation t, and g is the probability of germination, then the average density of 
seedlings is gSt. 

The spatial pattern of seedlings produced by a Poisson process with parameter 
gSt may be characterized as follows. (1) The number of seedlings in a spatial 
region of area, A, is Poisson distributed, with parameter: AgSt. Thus, the proba- 
bility that a region of area A will contain n seedlings is (e - 'X)/(n!), X = AgSt. (2) 
Statement (1) is true no matter what the shape of the spatial region is, what the 
value of A is, or where the region is located on the plane. In other words, the 
spatial pattern of seedlings is the random spatial pattern (as opposed to a clumped 
or overdispersed pattern) discussed by Pielou (1969) and many others. The intui- 
tive reason why the spatial pattern of seedlings is random when dispersal is large, 
is simply that, with large dispersal seedlings become randomly mixed over large 
areas. Thus, the spatial pattern of seedlings depends more on the randomness 
infused by large dispersal than on the spatial location and fecundity of each parent 
plant. For further discussion of Poisson processes, see Feller (1968, 1971) or 
Karlin and Taylor (1975, 1981). 

In all of our analytical neighborhood models, we assume that the locations of 
seedlings are governed by a Poisson process. The spatial distribution of seedlings 
in a computer model will be exactly random only in the limit as dispersal becomes 
infinite. We now demonstrate through an example, however, that a random spatial 
pattern may be a good approximation for cases in which dispersal distances are 
biologically reasonable. 

Our example involves the neighborhood computer model that produced figure 
3. Figure 5 contains results from 11 runs of this model, each with a different value 
for the mean dispersal distance. Each run consisted of 15 generations and, in 
every generation, we calculated the following clumping index for the center 13' r 
x 13' r portion of the modeled plot: 

clumping index = variance of the number of neighbors per seedling 
mean number of neighbors per seedling 

The expected value of this index is one if the spatial distribution of seedlings is 
random. Each point in figure 5 is a mean clumping index for a run, calculated by 
averaging the clumping-index values from generations 10 to 15. We wait until 
generation 10 to calculate the clumping index to reduce its dependence on the 
initial spatial distribution. Notice that the average clumping index rapidly ap- 
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FIG. 5.-Mean clumping-index values for seedlings in computer model runs. The functional 
forms for the predictors are the same as in the examples in group 1. Parameter values are: M 
= 10, c = 0.9, survivorship = 0.6, g = 1. The mean dispersal distances on the horizontal 
axis are given in units of r, where r is the neighborhood radius for the fecundity predictor. 

proaches one as the mean dispersal distance is increased. Thus, the stochastic 
process which governs the locations of seedlings is approximately Poisson for all 
dispersal distances in the figure greater than the neighborhood radius. A detailed 
investigation of conditions that result in randomly distributed seedlings is beyond 
the scope of this paper. Such a study would be a fruitful area for further work, 
especially if part of a more general study of the dependence of spatial pattern on 
the forms of dispersal, survivorship, and fecundity predictors. 

Analytically tractable neighborhood models have the following form: 

S+1 = gSt Z(St) F(St) 

LYield] - [Seedling ]Average ] pAverage (1) 
Yiel j density j survivorship fecundity] 

To derive specific models of the form (1), we must derive functional forms for 
average survivorship, Z(St), and average fecundity, F(St). 

Suppose that the average population density of seedlings on an infinite plane is 
gSt. The locations of seedlings are assumed to be governed by a Poisson process. 
Suppose that we select a seed at random and draw a neighborhood circle of radius 
r around it. We can use the properties of Poisson spatial processes to predict, in a 
statistical sense, the number and spatial arrangement of other seedlings in the 
neighborhood. For example, the probability that there are n neighbors is given 
simply by the Poisson distribution: (e-A X')/(n!), X = gStrrr2 (see the definition of 
the Poisson process given above). The locations of neighbors are independent 
random vectors. Each random vector is uniformly distributed over the neighbor- 
hood circle (see Hoel et al. 1971). 

We use the above information about the neighborhood configurations of seed- 
lings together with a fecundity and survivorship predictor to derive expressions 
for average survivorship and fecundity. For example, suppose that the survivor- 
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ship predictor, z(n), is a function solely of n, the number of neighbors. Because we 
consider an infinite population (positive density on an infinite plane), the fraction 
of seedlings that have n neighbors is equal to the probability that a randomly 
chosen seedling has n neighbors 

e- X' 
n! 

where X = gSt-rr 2 and rs is the neighborhood radius for the survivorship predictor. 
To simplify the notation we set the spatial scale so that arrr equals one. Thus, the 
average survivorship of seedlings is 

E e (st(Sg)'l Z(S t) = t(~)lz(n) 
1l=o 

= Fraction of seedlings] |Probability of survival for 1 (2) 
1=[ -with n neighbors i La seedling with n neighbors 

Suppose that the fecundity predictor is also a function solely of the number of 
neighbors. If this predictor is an SFP, then we can use (2) to obtain an expression 
for average fecundity. In the most simple case, the fecundity and survivorship 
predictor neighborhoods are equal in size. Then 

F(S t) e -Stg)' z(n) fs(n) 

(3) 
[>J Fraction of adult Number of seeds produced 

> plants that had n by an adult that had 
7=0 -neighbors as seedlings n seedling neighbors 

wherefs(n) is the SFP. With Z(St) and F(St) given by (2) and (3), the model (1) may 
be written 

00 t e - St(5g)fl 
St+ = gst i, n! z(n)fs(n). (4) 

In Appendix C1, we present expressions for F(St) for the two remaining cases: rf 
> rs and rf < rs, where rf is the neighborhood radius for the fecundity predictor. 

Suppose that the fecundity predictor is the AFP: fa(n). If the survivorship 
predictor is also density dependent, then the derivation of F(St) involves intracta- 
ble mathematics. We can, however, derive an expression for average fecundity if 
survivorship is density independent. For example, suppose that the survivorship 
predictor is the constant P. We set the spatial scale so that the area of the AFP 
neighborhood equals one. Then, the fraction of adult plants that have n adult 
neighbors is 

00 

X L St(g) I L(m) (P)'1 (1- _ auto 

>jY [ Fraction of adults that ][Probability that n of these 
M-,l Lhad m seedling neighbors neighbors survived to adulthood 
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The above expression reduces to the Poisson distribution: e (Pg) 
n! 

(see the end of Appendix B where analogous algebra is presented), and so the 
average fecundity of plants is 

F(St) > (PSg) faf) (6) 
170n 

With F(St) given by (6) and Z(St) equal to P, the model (1) becomes 

1,+ I = PgSt n e(n) (7) 
>1= 

Thus far, we have considered simple fecundity and survivorship predictors in 
which the independent variable is the number of neighbors. It is also possible to 
derive Z(St) and F(St) for cases involving more complicated predictors. For 
example, in Appendix C2 we derive F(St) for an AFP that includes the distance to 
neighbors. 

The general model (1) gives yield (St+ l) as a function of sowing density (St). The 
dynamical behavior of a model population of annuals is determined by the shape 
of the yield versus sowing density function (abbreviated YD function) defined in 
(1). In what follows, we first derive results that relate the shape of the YD function 
defined by a model to the model's dynamical behavior. We then analyze three 
specific examples of (1) in detail. In each of these examples, survivorship is 
density independent and the fecundity predictor is an AFP. The models in the first 
two examples are analytical analogues of the neighborhood computer models 
whose output is illustrated in figures 3 and 4. We use results derived for the 
analytical examples to explain the computer model output in these figures. Fi- 
nally, we show that the dynamics of the analytical examples are qualitatively and 
quantitatively similar to the dynamics of the corresponding computer examples. 

Analysis and Results for the General Model (1) 

Equilibria of the model (1) satisfy: 

1 = g F(St) Z(St) (8) 

and the conditions for the local stability of an equilibrium are 

1 < P(S); unstable; trajectories nonoscillatory 
o < P(S) < 1; stable; trajectories nonoscillatory (9) 

- 1 < P(S) < 0; stable; trajectories oscillatory 
T(S) < - 1; unstable; trajectories oscillatory 

where T(St) = gF(St)Z(St) + gSt dS( , and S is the equilibrium density. 

Equation (8) states that population dynamic equilibria correspond to the places 
where the YD function (1) intersects the 450 line: St+ I = St. Conditions (9) show 
that local stability is determined by the slope of the YD function at equilibrium. 
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A 

Sowing Density ( St) 

B 

Sowing Density (St) 

FIG. 6.-A, asymptotic yield vs. density function; B. humped yield vs. density function. 

Yield versus density relations have been the subject of considerable empirical 
inquiry. Published YD relations typically fall into one of two categories: asymp- 
totic as shown in figure 6A, or humped as shown in figure 6B (Myerscough and 
Marshall 1973; Harper 1977; Silvertown 1982). To define these two forms more 
precisely, the slope of an asymptotic YD relation is positive, monotone decreasing 
and equal to zero in the limit as St tends to infinity. The slope of humped forms is 
positive and monotone decreasing for small values of St, equal to zero for a single 
value of St, and negative for large values of St. Asymptotic YD relations are 
commonly referred to as the constant yield law (Harper 1977). 

Two results are obvious consequences of equation (8) and conditions (9). Result 
I: Suppose that a model of the form (1) defines an asymptotic YD relation. By 
equation (8), the model has a unique positive equilibrium which exists if T (0) > 1. 
By conditions (9), this equilibrium is always locally stable. In fact, it is straightfor- 
ward to prove that the equilibrium is also globally stable. Result II: Suppose that 
(1) defines a humped YD relation. As in Result I, this model has a unique positive 
equilibrium which exists if T(0) > I (see eq. [8]). The local stability of this 
equilibrium will depend on the precise shape of the YD relation. Below, we show 
that, in some cases, equilibria may be stable or unstable and trajectories may be 
oscillatory or nonoscillatory. Moreover, humped YD relations can result in cha- 
otic population dynamics. 

Example I 

This example is the analytical analogue of the computer example that produced 
the trajectories in figure 4. Thus, the survivorship predictor is a constant, P. and 
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the AFP is Qe-vn. With these specifications the model (7) becomes 

e- PSg(psg) -v 
S+I= P.Stgc' nn 

Qev 

= QPgSe - pSg > 
(PStge V)- (10) 

= QPgSt exp[ - PStg(1 - e 

The model (10) is mathematically equivalent to the extensively studied exponen- 
tial form of the logistic equation (see May and Oster 1976), and yet accounts for 
such complexities as plastic plant growth, the spatial distribution of individuals, 
and the fact that plants interact primarily with nearby plants. The unique positive 
equilibrium of (10) is S = ln(QPg)/[Pg(l - e-v)]. This equilibrium exists if PQg > 
1 and v > 0. Because the YD relation defined by (10) is humped, the model may 
exhibit a wide variety of dynamical behaviors: 

0 < ln(PQg) < 1; internal equilibrium is stable; trajectories nonoscillatory 
1 < ln(PQg) < 2; internal equilibrium is stable; trajectories oscillatory (11) 
2 < ln(PQg); internal equilibrium is unstable; trajectories oscillatory. 

The dynamics when ln(PQg) > 2 have also been categorized as part of a study of 
the exponential logistic equation. Sustained oscillations occur for all values of 
ln(PQg) greater than 2, and dynamics appear chaotic if ln(PQg) is greater than 
2.6924. . . (May and Oster 1976). 

The above results explain why the computer model analogous to (10) produced 
a highly erratic trajectory when ln(PQg) = 2.996, and relatively well-behaved 
trajectories when ln(PQg) = 0.693 or ln(PQg) = 1.386 (see fig. 4). This result is 
predicted by the stability conditions for the analytical model because (10) has 
chaotic dynamics if ln(PQg) = 2.996, and a stable positive equilibrium if ln(PQg) 
= 0.693 or ln(PQg) = 1.386. 

To further compare the model (10) with the analogous computer model, we first 
transform (10) so that the dynamical variable is the population density of adults. If 
Xt = PgSt, then 

Xt + I = QPgXt exp[ - Xt(1 - e1)]. (12) 

In figure 7, we plot numerical solutions of the model (12) for the parameter 
values: P = 0.2, g = 1, v = 0.2, Q = 10, 20, and 100. These are the same values 
used to produce the computer model trajectories in figure 4. Notice the striking 
correspondence between the predictions of the analytical and computer models in 
figures 4 and 7. 

Example 2 

Here, the AFP is M/(1 + cn) and survivorship is again constant. With these 
predictors, the analytical model is 

St = PS~g > e 
tg(PStg)n 

M 
St+ I = P~g ~~' n1 1 + cn' (13) 
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FIG. 7.-Numerical solutions of analytical model (12). The parameter values are: P = 0.2, 
g = 1, v =0.2, Q = 10, 20, and 100. 

The above example is the analytical analogue of the computer model that pro- 
duced the trajectories in figure 3. The model (13) is not as tractable as (10). 
However, if c = 1, then (13) can be expressed in a much more simple form 

15 -~ ~~> 

n=O Pt(n + 1)!+ (14) 

= M(l - e PSg). 

This equation defines an asymptotic YD relation. Thus, (14) has a single stable 
positive equilibrium, if M > 1 (see Result I). 

To treat cases other than c = 1, we first transform (13), so that the dynamical 
variable is the density of adult plants. If Xm is the population density of adults (Xr 
= PgS ), then 

Xtl=MPgX, E= n! '1 + c (15) 

The slope of the YD function (15) is 

=ig> e XX7Z Ln + 1 - X ] 

The sign of the above quantity does not depend on F, g, or M, and so we need only 
plot (15) for a range of values of c, to determine if this YD relation is monotone. In 
figure 8, we see that (15) gives the constant yield law for values of c less than or 
equal to one. We thus conjecture that the model has a single positive equilibrium if 
PgM > 1, and that this equilibrium is locally stable if c c 1. In contrast, if c > 1, 
then the model may have oscillatory dynamics. For example, in figure 9, we plot a 
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FIG. 8.-Yield vs. sowing-density functions defined by model (15). Parameter values are: 
M = 1, P = 1, g = 1, c = 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, and 1. 
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FIG. 9.-A numerical solution of the analytical model (15). Parameter values are: M = 50, c 
= 15, P = 0.9, and g = 1. 
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numerical solution of (15) for the following parameter values: g = 1, c = 15, M 
50, and P = 0.9. Notice that oscillations are persistent. 

To compare the model (15) with the analogous computer model, we first set P, 
M, c, and g at the same values used for the computer runs in figure 3,(P = 0.6, g = 
1, c = 0.9, M = 10, 30, and 50), and then obtain numerical solutions of (15). These 
trajectories are also graphed in figure 3 (solid lines). As before, there is striking 
quantitative agreement between the predictions of the analogous computer and 
analytical models. The reason for this agreement is that, in the computer exam- 
ples, dispersal is larger than the neighborhood radius (see fig. 5). Thus, the 
stochastic process that governs the spatial pattern of seedlings in the computer 
model is closely approximated by a Poisson process. 

Example 3 

Because fecundity predictors tend to be concave (see figs. 1, 2), they may be 
approximately linear for plants with crowded neighborhoods. Thus, an appropri- 
ate AFP, for plants growing at high mean density, might be y - pn, where y and p, 
are constants. With this AFP, the model (7) becomes 

St+ = PStg e (p5g) (y - n) 
n=O (16) 

PgySt - P.(PStg)2. 

The above model is mathematically equivalent to the discrete-time logistic equa- 
tion, and yet accounts for the sedentary nature and plastic growth of plants. Here, 
the constant (Pgy - 1) is the intrinsic rate of increase and (Pgy - 1)/(>P2g2) is the 
carrying capacity. Notice that these quantities are expressed in terms of measur- 
able properties of individual plants. Because the analysis of the discrete-time 
logistic is well known, we will not analyze (16), other than to point out that the 
model defines a humped YD relation. 

EMPIRICAL CALIBRATION AND MODEL TESTING 

There are two steps to an empirical test of a neighborhood model. First, the 
model must be calibrated for an experimental species. Because all functional 
forms and parameters in a neighborhood model-are contained in the survivorship, 
fecundity, and dispersal predictors, empirical calibration reduces to producing 
these three predictors for an experimental species. Thus, all functional forms and 
parameter values may be estimated from data obtained in simple experiments 
lasting a single year (see the section on predictors at the beginning of this paper or 
Silander and Pacala [1985]). The predictions of an empirically calibrated model are 
then tested with a population dynamic experiment. Population densities are first 
perturbed in several monoculture plots. These plots are then censused annually, 
to determine how well the model predicts the actual dynamics that follow a 
perturbation. Ideally, empirical calibration would be repeated in every year of the 
population dynamic experiment. This would allow one to assess year-to-year 
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changes in the three predictors. Temporal variation may be included in a neigh- 
borhood model by simply altering the predictors in the model from generation to 
generation. 

DISCUSSION 

We describe general and testable population dynamic models for monocultures 
of annual plants. These models explicitly include plastic plant performance, the 
spatial distribution of individuals, and the fact that plants interact primarily with 
nearby plants. We discuss both analytical models that are valid when dispersal is 
sufficiently large and computer models that are more general. The computer 
models are designed to determine the population dynamic consequences of 
specific fecundity, survivorship, and dispersal predictors. It is relatively straight- 
forward to include the many complexities associated with plant performance, 
interplant interactions, and plant dispersal in computer models. The more simple 
analytical models are used to explain the predictions of corresponding computer 
models. In some cases, the quantitative predictions of analytical models are 
virtually identical to those of their computer model counterparts (see figs. 3, 4, 7). 
Finally, because our neighborhood models are based on predictors for individual 
plants, these models provide explanations for population-level phenomena in 
terms of the biology of individuals. 

In this paper, we focus primarily on the exposition of our modeling approach. 
Neighborhood models can be used to address a wide variety of issues in plant 
ecology. For example, we have presented results that relate the shapes of yield 
versus sowing-density functions to the dynamical behavior of plant populations. 
We now offer two possible avenues for future theoretical work. First, many 
empirical studies have demonstrated that both density-dependent survivorship 
and density-dependent fecundity may influence plant population dynamics (re- 
viewed in Harper 1977). To study the conditions that determine the relative 
importance of these factors in regulating plant populations, one could study a 
series of models with different density-dependent survivorship and fecundity 
predictors. Second, plant dispersal clearly influences the spatial distribution of 
plants. Under some conditions, short dispersal results in a clumped distribution of 
seedlings (Bartlett 1960), because offspring tend to be aggregated around their 
mother's location. A clumped distribution of seedlings is also expected if seeds 
aggregate in depressions in the soil. In contrast, if plants are overdispersed 
because of competition, and each plant produces from one to a very few seeds, 
then short dispersal may result in an overdispersed distribution of seedlings. 
Because the fecundities and survivorships of individuals depend on their spatial 
distribution, dispersal may influence the dynamics of a plant population. To 
examine the effects of dispersal on population dynamics, one could compare the 
predictions of several computer models with the same fecundity and survivorship 
predictors, but with different dispersal predictors. 

Neighborhood models should also prove useful in empirical studies of plant 
population dynamic processes. An empirically calibrated and tested model would 
provide explanations for the abundances and dynamics of single-species popula- 



404 THE AMERICAN NATURALIST 

tions. These explanations would be given in terms of the empirically calibrated 
survivorship, fecundity, and dispersal predictors. Moreover, because our popula- 
tion dynamic models are based on predictors for individual plants, the models 
should prove useful in empirical studies of the individual ecology of plants. For 
example, plant autecologists commonly measure the physiological responses of 
plants to light, water and nutrient regimes. To determine the population dynamic 
consequences of these physiological responses, one could grow populations of 
plants under different environmental conditions and obtain survivorship, fecun- 
dity and dispersal predictors for the plants in each population. One could also 
compare such attributes of plant species as growth form, phonology, and habitat 
preference, with the dispersal, survivorship and fecundity of each species. New 
relationships might thus be discovered among population dynamics, the nature of 
interplant interactions, and the physiology and natural history of a species. 

The models described in this paper can serve as a foundation on which to 
develop a general plant population dynamic theory. We are currently working in 
four areas to extend neighborhood theory. First, we are building seed dormancy 
into the models. Second, we are developing age- and size-structured population 
dynamic models for perennial plants. Our perennial models contain neighborhood 
predictors that give the size and seed set of a plant at the end of a growing season, 
as functions of conditions at the beginning of the growing season. These condi- 
tions include the size and age of the plant, and the number, size, and spatial 
distribution of neighbors (see Waller 1981). Third, we are working to model 
explicitly spatial heterogeneity in physical conditions that affect fecundity and 
survivorship. Fourth, we are building multispecies neighborhood models. 

Finally, neighborhood population dynamic models may serve as the basis for a 
theory of the evolutionary ecology of plants. In an evolutionary model, different 
genotypes would have different fecundity, survivorship, and dispersal predictors. 
The purpose of an evolutionary model would be to determine how these attributes 
of individual plants evolve, and, in so doing, to study the evolution of plant 
population dynamic processes. 

SUMMARY 

We present tractable formulations for neighborhood models of annual plant 
population dynamic processes. These models are constructed from submodels, 
termed predictors, of individual plants. Fecundity and survivorship predictors 
give the fecundity and survivorship of an individual as a function of local popula- 
tion density. Dispersal predictors predict the dispersal pattern of a plant's mater- 
nal progeny and the survivorship of plants from seed to seedlings. 

We develop both computer models and analytically tractable models. Our 
computer models are designed to determine the population dynamic conse- 
quences of specific fecundity, survivorship and dispersal predictors. The analyt- 
ical models are valid when dispersal is sufficiently large, and are used to explain 
the predictions of analogous computer models. We show through examples that 
the predictions of corresponding computer and analytical models may be virtually 
identical. 
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Empirical tests of these models are practical because all model parameters and 
functional forms can be estimated with data obtained in a single year. We describe 
the experiments and statistical methods used to test a neighborhood model. 

Finally, we describe how neighborhood models can be used to address specific 
issues in plant ecology and discuss possible extensions of neighborhood theory. 
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APPENDIX A 

If the x- and y-coordinates of plants in a neighborhood computer model are stored in a 
simple array, then the computer must compare the locations of all possible pairs of plants to 
determine which plants are in each plant's neighborhood. It is prohibitively time consuming 
to calculate distances between all possible pairs of plants if the number of plants is large. To 
circumvent this problem, we store the locations of plants in a more complex data structure: 
a two-dimensional array of linked lists. 

Consider a two-dimensional array, g(i, j), in which i and j each range from zero to N. 
Thus, g(a, b) is the entry in the ath row and bth column of a table with (N + 1)2 entries. 
Now consider a two-dimensional array of linked lists: G(i, j), i = (0, 1, 2, . . ., N), j = (0, 1, 
2, ..., N). G(i, j) is also a table with N + 1 rows and N + 1 columns. However, each 
"position" in the table is now more complicated. Specifically, each position is occupied by 
a linked list, a data structure which may be thought of as a table with a variable number of 
rows. Each "row" of a linked list is called a node. Thus, the linked list G(a, b) is located in 
the ath row and bth column of a two-dimensional table, and the data structure G(i, j), i = 

(0, 1, 2, . . ., N), j = (0, 1, 2, .. ., N), contains (N + 1)2 separate linked lists. 
Suppose that we wish to store the coordinates of a plant, x and y, in this data structure. 

We first truncate the values of the coordinates: Tx = trunc(x), Ty = trunc(y). We then store 
the values of x and y in a node of the linked list: G(Tx, Ty). Each node of a linked list 
contains the x- and y-coordinates for a different plant. The data structure G(i, j) may be 
thought of as a grid framework on the modeled plot. For example, the grid square (linked 
list) G(1, 2) contains all plants with an x-coordinate greater than or equal to one and less 
than two, and a y-coordinate greater than or equal to two and less than three. 

To identify all neighbors of a plant located at the position, (x, y), we first calculate a 
neighborhood circle around (x, y). All plants in all grid squares (linked lists) wholly within 
this circle are neighbors of the plant. To locate the remaining neighbors, we must calculate 
the distance between (x, y) and each plant in grid squares that lie partly within the 
neighborhood circle. All plants in grid squares outside the neighborhood circle are not 
neighbors of the plant at (x, y). For a more concrete example, suppose that the plant is 
located at x = 50.5, y = 50.5, and that the neighborhood radius is one. This plant will be 
located in the linked list G(50, 50). The only grid square wholly within the neighborhood 
circle is G(50, 50), and so all plants in G(50, 50) are neighbors of the plant at x = 50.5 and y 
= 50.5. The grid squares G(51, 50), G(50, 51), G(51, 51), G(50, 49), G(49, 50), and G(49, 49) 
lie partly within the neighborhood, and so we must retrieve the locations of potential 
neighbors in these six linked lists and calculate the distance between each potential 
neighbor and the point (50.5, 50.5). Finally, all grid squares G(i, j) such that i < 49, i > 5 1, 
j > 51, orj < 49 will contain no neighbors of the plant at x = 50.5, y = 50.5. Recall that 
if locations were stored in a simple array, then the computer would have to calculate 
distances between the plant at (50.5, 50.5) and all other plants on the modeled plot. 
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The amount of computer time required to locate the neighbors will depend on the number 
of linked lists, (N + 1)2, into which the plot is divided. For example, if N = 0, then all 
plants are stored in a single linked list. In this case, the computer must calculate distances 
between all possible pairs of plants. If (N + 1)2 is large relative to the number of plants, 
then the computer will waste time in checking the many empty grid squares. Thus, a 
program will be most efficient for some intermediate value of N. The optimal value or 
values of N will depend on the number and spatial distribution of plants in the model. In the 
examples that we have considered, a good value of N is very roughly VA, where S is the 
average number of plants in the run. 

Finally, one other advantage of storing the locations of plants in a two-dimensional array 
of linked lists is that this data structure allows a very efficient use of computer memory. 
With over 10,000 plants in some runs, memory may be in short supply. 

APPENDIX B 

We assume that seedlings of the first generation are distributed over an infinite plane and 
that the locations of these seedlings are governed by a Poisson process. The seedlings then 
interact via a survivorship and fecundity predictor and set seed. In this appendix, we 
demonstrate that if dispersal is sufficiently large, then the locations of seedlings in the 
second generation are governed approximately by a Poisson process. Below, unless other- 
wise specified, the word seedling refers to first-generation plants. 

The following argument is valid for population dynamic models that contain either an 
AFP or an SFP. However, a simpler argument would suffice for models containing an SFP. 

We start by dividing the infinite plane into grid squares. The i-jth grid square is labeled 
Rij, and each grid square measures V units on a side. We set the spatial scale so that i andj 
are the coordinates for the point at the center of Rij. Inside each grid square is a smaller grid 
square labeled R1j. The border of R1j is r, units from the border of Rij, where r, is the 
neighborhood radius for the survivorship predictor. Inside R1j is a still smaller grid square 
labeled R*'i. The border of R[,. is r units from the border of Rij, where rf is the neighborhood 
radius for the fecundity predictor. The regions Rij, R1-, Rff, RijI R>ij., and Rii.1 are 
illustrated in figure B 1. 

Let Yij be a random variable giving the yield (total no. of seeds produced) in the region 
Rff. Consider any two grid squares, Rij and Rb, (i, J) # (a, b). By the properties of Poisson 
processes: 

r f ri s o 

FIG. B 1.-Two adjacent grid squares on the infinite plane. 
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The number and spatial locations of seedlings inside Rij are independent of (Bi) 
the number and spatial locations of seedlings inside Rab. 

Because the border of Rj is r, units from the border of Rij, the survivorships of seedlings 
inside R!j are not affected by seedlings outside of Rij. Similarly, the fecundities of adults 
inside Rij are not affected by plants outside of R1,. Thus: 

The yield in RK' is not affected by plants outside of Rij. However, Y'ij is affected 1i (B32) 
by the number and spatial distribution of plants within Rij. 

From (B11) and (B2), we conclude that Y~'iand Y'ab, a = (-ox, Ax), b = (-ox, ??), i = (- ?, ??), 
j = (-aoo, o), (i, J) # (a, b), are independent random variables. It is straightforward to 
express the above intuitive argument in the form of a mathematical proof. 

We now show that the Yr',, i = ( - ,oo x),j = (o- o, oA), are also identically distributed. Let 
(X*., Uk) be the spatial coordinates of the kth seedling in the region Rij. We define the 
"adjusted" location (Xk, Uk) of the kth seedling as: Xk = Xk- - i, Uk = Uk- - j. Let gij(xl, 
U1, x2, u2, ... ., X,, um1m) be the probability density for the adjusted locations of seedlings in 
Rij, given that there are m seedlings in Rij. Further, let fij(m) be the probability density for 
the number of seedlings in Rij (the Poisson density). Finally let 

qij(m, x1 l, . . . Xrn, unn) = fiJ(m)giy(x1, U1, X** , uninm). 

By the properties of the Poisson spatial process 

qij(m, x1, u , . . . I , Ural) = qab(mn, X1, U,*. Xtn1, un) (B3) 

for any two areas, Rij and Rab- 
We define the conditional density of Y~'i, given the number and adjusted spatial locations 

of seedlings inside Rij, as ci1(ylm, xl, , . . x, IX,, urm). Because the same functions are used 
for the survivorship and fecundity predictors in each grid square 

cij(ymn, X1i II, u . x,x, u111) = cab(ym, X1 UI,u . Xn, 1,n), (B4) 

for any two areas (i, j) # (a, b). The consequence of (B3) and (B4) is that the Y1'j, =( - I 
oA), j = ( - oA, oA), are identically distributed random variables. 

Let Fij be the region between the borders of Rij and Rff. The area of Fij is labeled Al-, and is 
equal to 4[V(rf + r,) - (rf + r,)2]. Also, suppose that AR" is the area of R'j. This area is equal 
to (V - 2r, - 2rf)2 and so 

lim F= 0. (B5) 
v-? AR" 

Equation (B5) states that, if V is large, then Rfj occupies most of the area within Ri. 
Because yield is typically proportional to area, we expect that, when V is large, most of the 
yield of Rij will be produced within Rfj. It is, in fact, straightforward to prove the following: 
Suppose that, for any V > 2r, + 2rf, there is a positive probability that Y2j > 0. Further 
suppose that the fecundity of plants has a finite upper bound. Then 

lim j = 0 (B6) 

i-a j=-cY 

where Yrj is the yield of the region Fij. Thus, if V is sufficiently large 

lim ' a lim =S (B7) 
0( os0 aY aY ( >00 (D 0t 
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where Yij is the yield of Rij, and S is mean population density of seeds produced on the 
infinite plane. Because the YIJ are independent and identically distributed 

E(Y;) = lim a (B8) 

i=-cf j=-cx 

where E(Yj) is the expectation of Yj. 
In what follows, we assume that V is large, and use the approximation: E(Y') S. 
With these preliminaries, we now derive a probability density for the number of seedlings 

that germinate in the second generation within a small region, T, of area AT. To simplify the 
notation we first adjust the location of the origin and the grid framework so that the region, 
T, contains the origin. 

We assume that the dispersal function for a seedling L(du,) depends only on the distance, 
du,, between the mother's location vector, v, and the seedling's location vector, u. Thus the 
density function L(du,) is symmetric: L(dxy) = L(dyx). One may also interpret L(du,) as the 
dispersal function for the location of a seed immediately prior to germination. 

The distance between any plant in Rij and any point in -may be written as i2 + + E 

(E gives the difference between the actual distance and N/i + j ). Now, suppose that the 
mean dispersal distance of seeds is d, and that d is large relative to V and to the largest 
linear dimension (i.e., length) of T. Under these conditions and for many biologically 
reasonable dispersal functions, we may approximate L(Vi7 + j7 + E) by L(N/i2 + j ). For 
example, if the dispersal function is the exponential density 

L ( + e) 
=-1 ________ 

(B9) L(V/77-+ j- exp 19 

where 0 is a normalizing constant, then 

L (V71-1~ + E) = L(V ? [) - d e1 + 0(E d 

Here, O(E2/d3) means terms of order E2/d3. Thus, if d>> E 

L(VT77 + E) L(VK72)- (B 10) 

Let H(y) be the probability density for YJ. Using the approximation (BIO), we write the 
probability that k seeds will disperse from Rff to i-as 

00 

@(k) = H(y) (X) Ai (1 - Aij) 

6 11f(V?77) du= L(12+J2) AT. 

The probability generating function for the number of seeds that disperse from Rij to i is 
00 00 

?(S) = I H(y) (X) j6 (1 - 5ij) Sk 
k=O Y=k 

ofy 

=>IE H(Y) >(X)j(1 - 6,Yk Sk 
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00 

= Z H(y) [1 + 6ij(s - 1)]Y 
y=O 

= h[1 + 51j(s - 1)] 

where h(w), w = 1 + 5ij(s - 1), is the generating function for YK. 
Because the Y~g, i = (- oo), j = (- oo), are independent and identically distributed, 

the generating function for the total number of seeds that disperse from the Rff to T is simply 
the product of the generating functions for the numbers of seeds that disperse from each 
area R', i = (-?,??), j = (-c?,??), to T: 

V(S) 4 jjh[1 + 8ij(s - 1)] 
i= -OC j= _OC 

log[4i(s)] = log H(y) [1 + i(s - 1)]y}. (B 1) 
i= =-o j= =-o y= 0 

Recall that ij= ATL(\/77). For many biologically reasonable dispersal functions, if the 
mean dispersal distance of seeds is large relative to AT, then the probability is small that any 
given seed will disperse into T. For example, if L(du,) is given by (B9), then 

6 ATex( 'K dl O 
Od d AA 

_ 0 

d 

If aij, i = (-oooo),j = (-oo) is small, then 

log{ H(y) [1 + 86j(s - 1)]yt = log H(y) [1 + ybij(s - 1) + 0(a)] 

= log[l + E(Y~',)8iy(s - 1) + 0(8?.)] 

E()8ij(s - 1). 

Recall that S E(Y~'5) (see [B7] and [B8]). Using this approximation, we rewrite (B 11) as 

x1 00 

log [+(s)] A >3 [E(Y;2)861(s - 1)] 
i= -x j= _x0 

SAT(s - 1) E >3 L(Vi+j) 
i= -X' j= -cc 

SAT(S - 1) 

ts SAT(S - ) 

This is the probability generating function for a Poisson random variable. To summarize, if 
dispersal is sufficiently large, then the probability that there are k seeds in T, immediately 
prior to germination, is approximately 

e SAT (SAT)k 
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We now use the probability of germination, g, together with the binomial density, to 
derive the probability that there are m second-generation seedlings in v 

Probability that there e - SA 
are m second-gener- = e (SAT) k gm (1 - ok-n 

ation seedlings in v k=rn k tn) 

e SAT (5AOg)l [SAT (1 - g)O]klf 

m! *'k=m (k- 

e 
- 

SA AT) 
in 

SA,( 1 - g) 
m ! 

e 
- 

T (gSAT)m 

m! 

Thus, the probability that m seedlings germinate within v during the second generation is 
given by the Poisson distribution with the mean equal to the average population density of 
seedlings on the plane. 

APPENDIX C 

1. Here, we derive average fecundity [F(S,)] for cases in which the survivorship predictor 
is z(n) (n is the number of neighbors), the SFP is ft(n), and the radii of the fecundity and 
survivorship predictor neighborhoods (rf and r,) are not equal. We set the spatial scale such 
that arr2 = 1. If rf > r, 

N; Yc e 
- Stg(5gfl Im 

t 

F(St) = ~9o p9o [ m! Z(St) K ( i! ) [fs(n + i)], 

A = Stg (IrT - 1). 

If rs > rf 

F(St)= >3 a [esm(Sg)rnz(m)j F(m)(rr)'(1 -T,2)m -1 n)] 

2. In this section, we derive average fecundity [F(St)], for the case in which the survivor- 
ship predictor is a constant, P, and the AFP is M/(1 + cI). Here, I is L'i [1 - (dil/r)2]; I is 
assumed to equal zero if n equals zero, di is the distance to the ith neighbor, rf is the 
neighborhood radius of the AFP, and other symbols are as before (see Silander and Pacala 
[1985] for a discussion of this fecundity predictor). Recall that the locations of neighbors 
are independent random vectors and that the location of each neighbor is uniformly 
distributed over the neighborhood circle. Thus, the random variables di, (d1, d2, . . ., d,)I 
are independent and identically distributed, with density function: D(x) = 2xlrf. Using this 
fact, it is straightforward to prove that the random variable, yi, defined as yi = (dilrf) , is 
uniformly distributed over the interval (0, 1). Furthermore, the yi, [i = (1, n?)] are indepen- 
dent and identically distributed. Thus, if: A = 1hi_ I yi, then A is the sum of n independent 
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and uniformly distributed random variables. We know from Feller (1971) that the density 
function Ujz) of A is 

U, (Z) = j (-1) (a(z - a)W n, ? 1. (n a )!a= 

Here, the notation, (z - a)"- means (z ) + 2(z -)"- + ~~~~~~2 
We can rewrite the fecundity predictor, M/(1 + cI), in terms of the variables A and sn: M/ 

(1 + cn - cA). Thus F(St) is 
y(S [ = PS tg)b fb M 1 

F(S~) = Me -Psg + [JUb, (Z.) I+c-czdz b I~ ~ ~ 1cbc 
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