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COMPETITION AND BIODIVERSITY IN 
SPATIALLY STRUCTURED HABITATS1 

DAVID TILMAN 
Department of Ecology, Evolution, and Behavior, 1987 Upper Buford Circle, 

University of Minnesota, St. Paul, Minnesota 55108 USA 

Abstract. All organisms, especially terrestrial plants and other sessile species, interact 
mainly with their neighbors, but neighborhoods can differ in composition because of dis- 
persal and mortality. There is increasingly strong evidence that the spatial structure created 
by these forces profoundly influences the dynamics, composition, and biodiversity of com- 
munities. 

Nonspatial models predict that no more consumer species can coexist at equilibrium 
than there are limiting resources. In contrast, a similar model that includes neighborhood 
competition and random dispersal among sites predicts stable coexistence of a potentially 
unlimited number of species on a single resource. Coexistence occurs because species with 
sufficiently high dispersal rates persist in sites not occupied by superior competitors. Co- 
existence requires limiting similarity and two-way or three-way interspecific trade-offs 
among competitive ability, colonization ability, and longevity. 

This spatial competition hypothesis seems to explain the coexistence of the numerous 
plant species that compete for a single limiting resource in the grasslands of Cedar Creek 
Natural History Area. It provides a testable, alternative explanation for other high diversity 
communities, such as tropical forests. The model can be tested (1) by determining if 
coexisting species have the requisite trade-offs in colonization, competition, and longevity, 
(2) by addition of propagules to determine if local species abundances are limited by 
dispersal, and (3) by comparisons of the effects on biodiversity of high rates of propagule 
addition for species that differ in competitive ability. 

Key words: biodiversity; coexistence; colonization limitation; competition; dispersal; metapopu- 
lations; spatial competition hypothesis; spatial subdivision. 

INTRODUCTION but because none of its propagules has yet arrived at 

Within any habitat, an individual organism is more that site. Colonization limitation, which is also called 

likely to interact with neighboring organisms than with recruitment or dispersal limitation, has been cited as 

more distant ones. This is especially so for terrestrial an important factor determining successional dynam- 

plants, many marine invertebrates, corals, and other ics, community diversity and composition, and long- 

sessile organisms (Pacala 1986a, b, Goldberg 1987, term community dynamics following deglaciation (e.g., 

Pacala and Silander 1990). Strong neighborhood in- Horn 197 1, Platt and Weis 1977, Hastings 1980, Davis 

teractions are also the rule for motile species that con- 1981, 1986, Gross and Werner 1982, Connell 1985, 

sume ephemeral and patchy resources (Hanski 1990, Gaines and Roughgarden 1985, Huston and Smith 

Shorrocks 199 1). However, the dynamics and diversity 1987, Menge and Sutherland 1987, Cornell and Law- 

of a community depend not only on neighborhood ton 1992). In total, such studies suggest that sessile 

interactions, but on the dispersal of organisms among organisms often have strong interactions within neigh- 

neighborhoods (e.g., Horn and MacArthur 1972, Ra- borhoods, but that neighborhoods can differ in com- 

binowitz and Rapp 198 1, Gross and Werner 1982, position because of colonization limitation. 

Levin et al. 1984, Paine 1984, Howe et al. 1985, Cohen For mathematical and conceptual simplicity, most 

and Levin 1991, Hassell et al. 199 1, and references ecological models have assumed that all individuals of 

cited in Shorrocks and Swingland 1990, Gilpin and all species experience identical conditions, i.e., live in 

Hanski 1991). For example, a species may be absent a well-mixed, homogeneous, nonspatial habitat in which 

from a locality not because of local biotic interactions all neighborhoods have identical compositions. How- 
ever, because each individual organism exists at a dis- 
crete point in space, there are unavoidable site-to-site 

' For reprints of this Special Feature, see footnote 1,  p. 1. differences in the local biotic composition of a habitat 
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caused by random colonization and mortality. This 
occurs even though the underlying physical environ- 
ment is homogeneous with no physical barriers to dis- 
persal (e.g., Pacala and Silander 1990). Thus, the dis- 
creteness of individual organisms means that all 
organisms live in a spatially structured, subdivided 
habitat. 

There have been numerous theoretical demonstra- 
tions that habitat subdivision can allow two species, a 
fugitive species and a superior competitor, to stably 
coexist as metapopulations (e.g., Skellam 195 1, Levins 
and Culver 197 1, Horn and MacArthur 1972, Arm- 
strong 1976, Hastings 1980, Shmida and Ellner 1984). 
Spatial structure can also stabilize host-parasite and 
predator-prey interactions (Huffaker 1958, Kareiva 
1987, KareivaandOdell 1987, Pacalaet al. 1990, Has- 
sell et al. 199 I), and influence the evolution of coop- 
erative behavior (Nowak and May 1992). Despite its 
potential importance, spatial structure frequently has 
been ignored by field workers and theoreticians, myself 
included, because it greatly increases the types and 
amounts of data needed for field studies and compli- 
cates mathematical theory. However, there is increas- 
ingly strong evidence that spatial subdivision is an es- 
sential factor controlling the species dynamics and 
biodiversity of many communities. 

My interest in spatial structure grew out of a decade 
of work regarding successional dynamics and biodi- 
versity in grasslands. Our experiments have shown ni- 
trogen to be the only limiting resource in the old fields 
and native prairie of Cedar Creek Natural History Area, 
Minnesota (Inouye et al. 1987, Tilman 1987, 1988, 
1990). There is strong belowground competition among 
plants in these fields (Wilson and Tilman 1991a, b). 
Herbivory is of low intensity (Tilman 1990). Light is 
not limiting. Garden experiments have shown that lit- 
tle bluestem (Schizachyrium scoparium), a native 
bunchgrass, is the best nitrogen competitor (Tilman 
and Wedin 1 99 1 b, Wedin and Tilman 1 993). Theory 
predicts that the best competitor for a single limiting 
resource should displace all other species from a hab- 
itat, independent of their initial densities (Tilman 1982). 
Long-term competition experiments performed in gar- 
dens have strongly supported this prediction (Tilman 
and Wedin 1991 b, Wedin and Tilman 1993). Little 
bluestem did displace all other species from nitrogen- 
limited garden plots. Its monocultures were almost 
never invaded by other species, whereas monocultures 
of lesser competitors had to be weeded frequently. Why, 
then, do > 100 species coexist with little bluestem in 
grasslands and native prairie in which nitrogen is the 
only limiting resource? 

Explanations of diversity require an interspecific 
trade-off. A comparison of allocation patterns among 
46 species common at Cedar Creek suggested strong 

trade-offs between root and reproductive allocation 
(Gleeson and Tilman 1990). In addition, our five most 
abundant grass species differed greatly in their allo- 
cation to root vs. allocation to vegetative or sexual 
reproduction in long-term garden monocultures on low 
nitrogen soils (Tilman and Wedin 199 1 a). Species with 
greater allocation to root reduced the soil concentra- 
tions of dissolved ammonium and nitrate to signifi- 
cantly lower levels (Tilman and Wedin 1991a). The 
level to which an equilibria1 monoculture of a species 
reduces the concentration of its limiting resource is 
called its "R*" (Tilman 1982). As predicted by theory, 
species with lower R* values for nitrogen displaced 
other species from low-nitrogen garden competition 
plots, independent of the initial abundances of the 
competitors (Tilman and Wedin 199 1 b, Wedin and 
Tilman 1993). However, higher allocation to roots cor- 
responded with lower allocation to reproduction, and 
with slower dispersal. 

Our poorest nitrogen competitors, Agrostis scabra 
and Agropyron repens, invaded fields immediately after 
abandonment (Fig. 1A). In contrast, the two best ni- 
trogen competitors, the native bunchgrasses, little blue- 
stem and big bluestem, required 11-17 yr to invade 
abandoned fields (Fig. lA), and 30-40 more years to 
spread across and dominate fields (Fig. 1 B). Thus, in- 
ferior nitrogen competitors were displaced within 3 or 
4 yr when colonization limitation was overcome by 
the addition of bunchgrass seed in our garden plots 
(Tilman and Wedin 199 1 b, Wedin and Tilman 1993), 
but displacement was extremely slow in nature when 
the bunchgrasses were self-recruiting. Moreover, these 
bunchgrasses were rarely more than 50°/o of plant mass 
in our grasslands. The species with which they coex- 
isted in nature had higher allocation to reproduction 
(Gleeson and Tilman 1990, Tilman and Wedin 199 1 a), 
rapidly colonized fields, and dominated fields for de- 
cades, despite being poorer nitrogen competitors. 

Could it be that superior competitors are prevented, 
by their poorer colonization abilities, from occupying 
the entire landscape, and that this provides sites in 
which numerous species of inferior competitors can 
persist? Might this be a general pattern in plant com- 
munities? The chalk grasslands of England and Europe 
are similar in having a matrix of tussock grasses within 
which numerous additional species persist (Grubb 
1986). Grubb has suggested that differences in the dis- 
persal and establishment abilities of these species are 
critical for the maintenance of diversity. 

Similar questions arise for animal communities. 
Hanski (1990) studied the fly community that con- 
sumes carrion in southern Finland. Although all 14 fly 
species persist in nature, only 3 of 14 species persisted 
when confined to cages provisioned with liver each 
week of the growing season. One of these species was 
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the best competitor. The persistence of the other two 
depended on liver being provided as numerous small 
pieces scattered across the cage. Hanski (1990) sug-
gested that natural diversity was maintained by inter-
specific differences in competition and dispersal abil-
ities. Shorrocks (1991) studied competition for 
ephemeral resources by two species of Drosophila. The 
superior competitor, D. melanogaster, displaced D. im-
migrans from undivided habitats, but the species co-
existed in spatially subdivided habitats. Thus, spatial 
subdivision allowed global coexistence of competitors 
despite one species being a superior competitor in any 
food patch. 

Such results raise a number of questions that are 
addressed in this paper. Can spatial subdivision allow 
the stable coexistence of a large number of competing 
species that could not coexist in a well-mixed habitat? 
If so, what traits must organisms have to stably coexist? 
Are such traits likely? What are the dynamics of such 
communities? Are there deterministic limits to the 
similarity of coexisting competitors? Can coexistence 
occur when the only source of "disturbance" is the 
death of individual organisms? 

Aspects of these questions have been addressed in 
models of competition and dispersal in subdivided 
habitats (e.g., Levins 1969, Levin 1974, 1976, Yodzis 
1978, Hastings 1980, Hanski 1982, 1983, 1989, Shmi-
da and Ellner 1984, Harrison et al. 1988, Gotelli 1991, 
Nee and May 1992), and in papers that treat space as 
if it were just another essential resource (Platt and Weis 
1977, Tilman 1982). In this paper, I first summarize 
the original model of Levins (1969) and the extensions 
by Hastings (1980) and by Nee and May (1992). A 
modified version of their models is then used to explore 
interactions in a subdivided habitat among a poten-
tially unlimited number of species. This demonstrates 
that spatial subdivision can explain the stable coexis-
tence of an unlimited number of competing species in 
a physically homogeneous habitat. 

THEORYOF COMPETITIONIN A 

SUBDIVIDEDHABITAT 

Levins' model o f the  dynamics o f a  
single species 

Consider a single sessile species living in a habitat 
composed of distinct sites, where each site is the size 
of the area occupied by one adult. The death of an 
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FIG.1. (A) The observed interspecific trade-off between 
the years required for a dominant grass species to invade old 
fields and the competitive ability of the species for soil nitro-
gen (from Tilman 1990). Competitive ability is expressed as 
the observed R* of each species for soil nitrogen, as deter-
mined in long-term monocultures of each species on a low 
nitrogen soil (Tilman and Wedin 199la) .  Species with lower 
R* values are superior nitrogen competitors in a long-term 
garden study (Tilman and Wedin 1991b, Wedin and Tilman 
1993), but are much slower to colonize abandoned fields at 
Cedar Creek Natural History Area. (B) The approximate dy-
namics of succession at this site, based on a chronosequence 
of old fields (from Tilman 1988). 

\
Agropyron Agros t is-- ' 

adult would provide an opening for colonists. The dy-
namics of site occupancy would depend on the differ- death (mortality) and replacement (colonization)in each 
ence between the rate at which empty sites were col- site. 
onized and the rate at which sites became vacant because Let p be the fraction of sites occupied by a species, 
of mortality. The dynamics of the entire habitat are which will be called its abundance. Levins (1969) pro-
the sum of the individual-by-individual processes of posed a simple, general model for the dynamics of site 

0.0 0.2 0.4 0.6 

R' for Nitrogen (rnglkg soil) 
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occupancy in such a system: 

3 = cp(1 - p) - mp,
dt 

where c is the colonization rate and m is the mortality 
(local extinction) rate. Propagules disperse randomly 
among all sites. The rate of propagule production by 
the occupied sites, cp, is multiplied by the proportion 
of sites that are not yet occupied, 1 - p,  to give the 
rate of production of newly colonized sites. The mor- 
tality rate, m, is multiplied by the proportion of oc- 
cupied sites, p, to give the density-independent rate at 
which occupied sites become vacant. A site becomes 
vacant when the individual occupying that site dies. 

This model, which is directly analogous to the clas- 
sical logistic growth equation, has a globally stable 
equilibrium point (Hastings 1980), as does the logistic. 
Global stability means that the abundance of a species 
eventually approaches its equilibrial value, p, for all 
possible initial abundances (except p = O), and returns 
to this equilibrium after any size perturbation away 
from equilibrium (except one that gives p = 0). Equi- 
librium occurs when dpldt = 0, i.e., when there is no 
change in the abundance of the species. Thus, when 
Eq. 1 is set equal to zero, it is seen that the proportion 
of the habitat occupied at equilibrium, p, is 

This shows that a species can persist in a habitat only 
if its colonization rate, c, is greater than its mortality 
rate, m. Greater colonization rates or lower mortality 
rates lead to greater abundance. 

The most interesting feature of Eq. 2 is that a sessile 
species can never fill a habitat (i.e., have p = 1). For a 
species to completely fill a spatially structured habitat, 
the species would have to be immortal (m = 0) or have 
infinite dispersal abilities (c -+a),both of which are 
biologically unrealistic. The remainder of this paper 
assumes that m, > 0 and c, is finite for all species i. 
Such values mean that a species must leave a portion, 
ŝ , of the sites open, where s  ̂ = 1 - p = m/c. 

In the purest interpretation of this mathematics, each 
site should be the size of a single adult individual. This 
is the interpretation that I use throughout this paper. 
However, this model can approximate the dynamics 
of a series of local populations that are linked via dis- 
persal, which Levins (1969) called a metapopulation 
(see Gilpin and Hanski 199 1). When this model is used 
for a metapopulation, it must be assumed that each 
site is either empty or has attained its carrying capacity, 
and that the transition to a filled site occurs rapidly 
compared to colonization (Hanski and Gilpin 199 1). 

Competition between two species 

Because individuals of a single species cannot occupy 
all the sites in a habitat, a species that is an inferior 
competitor may be able to invade into and survive in 
the open portion of a habitat. This, in essence, is the 
basis for stable coexistence of two competitors in the 
cases discussed by Levins and Culver (1 97 I), Horn and 
MacArthur (1972), Hastings (1980), Nee and May 
(1992), and others. In reviewing their work, I will use 
Hastings's formulation, because it is the simplest, but 
will increase its generality by having mortality be a 
species-specific parameter. Hastings (1980) assumed 
that all species experienced the same mortality (dis- 
turbance) rate. Consider two competing species whose 
interactions are structured to give a competitive hi- 
erarchy. Let the superior competitor be species 1 and 
the inferior competitor be species 2. Subscripts refer 
to species. Let us assume that the superior competitor 
always displaces the inferior competitor when both 
species co-occur in a site, but that the inferior com- 
petitor can neither invade into nor displace the superior 
competitor from a site. This leads to two equations: 

The superior competitor (Eq. 3.1) has the same equa- 
tion as would a species living by itself, and thus is 
totally unaffected by the inferior competitor. The in- 
ferior competitor, species 2, can colonize only sites in 
which both it and species 1 are absent (the term 1 -
p,  - p, in Eq. 2). However, species 1 can invade into 
and displace species 2 (the term -c ,p ,p2 in Eq. 3.2). 
If the species have identical mortality rates, any two- 
species equilibrium point is globally stable (Hastings 
1980). Global stability occurs because the first species 
grows logistically, and approaches its equilibria1 abun- 
dance. Once the first species is at (or very near to) 
equilibrium, species 2 grows logistically to its equilib- 
rium. 

The superior competitor must have a colonization 
rate of c, = m,/(l - p , )  to attain an equilibrial abun- 
dance of p , .  The inferior competitor can invade only 
if dp,/dt > 0 for p ,  = p , .  When the value of c, (above) 
is substituted into Eq. 3.2 with dp2/dt > 0, it is seen 
that species 2, the inferior competitor, can invade only 
when 

Any two-species equilibrium point (p , ,  p, > 0) that 
results from the inferior competitor having a coloni- 
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zation rate that obeys this inequality is locally stable Additional results of Hustings and of 
(Appendix). By substituting in the equilibria1 abun- Nee and May 
dance of species 1, this can be expressed as 

C I  > m, (4.2) 
and 

-
c,(c, + m, - m,)

c2 > (4.3)
m, 

These are the necessary and sufficient conditions for 
the stable coexistence of a superior and an inferior 
competitor in a subdivided habitat. When mortality 
rates are equal, with m,  = m, = m, Eq. 4.3 simplifies 
to c, > cI2/m, which is the relationship derived by 
Hastings (1980). In this case c, must be greater than 
c, because c, > m, and c , /m is thus > 1. 

If the mortality rate of the inferior competitor (m,) 
is greater than or equal to the mortality rate of the 
superior competitor (m,), then the inferior competitor 
can only exist ('j,> 0) if it also has a greater coloni- 
zation rate (Eqs. 4.2 and 4.3). However, as shown by 
Nee and May (1992), if the inferior competitor has a 
lower mortality rate than the superior competitor, it 
may stably coexist even if it has a lower colonization 
rate than the superior competitor. The inferior com- 
petitor-colonist coexists with the superior competitor- 
colonist because its lower mortality rate reduces the 
amount of open space that it needs to survive. When 
its mortality rate is sufficiently low, it may be able to 
survive in the space left open by the superior compet- 
itor-colonist. However, this occurs only if at least half 
of the habitat is left open by the superior competitor- 
colonist species. If there is less open space than this, 
an inferior competitor must have greater colonization 
ability in order to coexist, no matter how low its mor- 
tality rate might be. Eq. 4.1 shows this because, when 
$, = 0.5, it simplifies to c, > c,(l + m,/m,), and this 
means that c, must be greater than c, no matter how 
small m, might be. 

At equilibrium (Eqs. 3.1 and 3.2 set equal to 0), s',, 
the proportion of sites not occupied by the two 
species, is 

Because c, must be greater than m,  for species 1 to 
exist, the term (1 - m,/c,) is always positive, as are 
the other terms in this equation. Thus c, has to ap- 
proach for the amount of open space, s',, to approach 
0. It is impossible for species 1 and 2 to fill the entire 
habitat if each experiences some mortality and each 
has a finite colonization rate. A portion of the habitat 
remains open and potentially can be invaded by other 
species. 

Hastings (1980) and Nee and May (1992) used com- 
petition models similar to that given above. Hastings 
focused on the effects of disturbance on species rich- 
ness, and thus had all species experience the same mor- 
tality rate. He derived the interesting result that species 
richness should be maximal at intermediate distur- 
bance rates, but that this need not be a unimodal re- 
lationship. Indeed, it is possible for species richness to 
rise and fall several times as disturbance rate increases 
in a system in which the presence or absence of one 
species affects the ability of another species to invade. 

Nee and May (1 992) addressed the important ques- 
tion of the effects of habitat destruction on two-species 
competition. Their model included the proportion of 
the habitat made inhospitable to both species by hab- 
itat destruction. They showed that increased habitat 
destruction led to increased abundance of a weedy, 
fugitive species in the portion of the habitat that was 
undisturbed. Thus, habitat loss can lead to significant 
changes in the composition of the remaining, undis- 
turbed patches, even though disturbed patches are not 
serving as sources of weedy propagules. 

Multispecies competition 

Previously published work has clearly demonstrated 
that spatial subdivision may allow the stable coexis- 
tence of two species that are incapable of coexisting in 
any single site. This stable coexistence does not depend 
on any underlying physical heterogeneity or barriers in 
the habitat. Rather, all that it requires is for each in- 
dividual to compete only within its neighborhood, for 
neighborhoods to be joined by dispersal, and for spe- 
cies to have appropriate trade-offs. 

To generalize this to any number of species, rank the 
species from the best competitor (species 1) to the poor- 
est. The equation for the dynamics of the iIh species is 

There are n such equations for n species. The dynamics 
of each species depend on colonization (the first term), 
on mortality (the term -m,p,), and on competitive 
displacement (the last term). A species is only affected 
by species that are superior competitors. 

Before analyzing this model, let us consider its as- 
sumptions. The model does not include the mecha- 
nisms of resource competition (e.g., O'Brien 1974, Til- 
man 1976, 1982, Hsu et al. 1977). Rather, it summarizes 
the essential qualitative features of competition for a 
single limiting resource. The model assumes that a 
single species is the best competitor (i.e., would have 
the lowest "R* value" in a model of competition for 
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a single resource; Tilman 1982), and would displace 
and exclude all other species from a site. All species 
are arranged in a simple competitive hierarchy, com- 
parable to a ranking from the lowest to highest R*. A 
better competitor can invade a site containing a poorer 
competitor and displace it, but a poorer competitor 
can neither invade nor displace a better competitor. 
The habitat is spatially subdivided but, for any given 
species composition, the outcome of competition is 
identical in all localities. However, localities may differ 
in species composition as a result of local biotic dis- 
placement, local mortality, and colonization. All re- 
cruitment is internal. Once a species has gone extinct 
throughout the habitat, there is no possibility of re- 
establishment. Organisms reproduce, colonize, and die 
continuously. Thus, the model deals with the internal 
dynamics of recruitment, biotic interaction, and mor- 
tality in a spatially subdivided, but infinitely large hab- 
itat. The model does not include local dispersal, but 
rather assumes that propagules are scattered, at ran- 
dom, over the entire habitat. 

At equilibrium (Eq. 6 set to O), the nth species oc- 
cupies a proportion, p,, of the habitat, where 

This is similar to the equation for the abundance of a 
single species (p = 1 - mlc, Eq. 2), except that the 
abundance of the nth species also is reduced by the 
summed abundances of all its superior competitors and 
by the summed ratio of the rate at which it is displaced 
by superior competitors to its dispersal rate. 

It is possible to sequentially calculate, starting with 
species 1, the colonization rate required for each spe- 
cies to attain its equilibria1 abundance (Appendix). The 
required colonization rate of the nth species is 

All multispecies equilibria resulting from such colo- 
nization and mortality rates are locally stable (Appen- 
dix). 

Eq. 8 can be rearranged to show that it is impossible 
for a chain of n species, no matter how long, to occupy 
all sites in a habitat. A portion of the sites, s',, remains 
open at equilibrium: 

It has already been shown that neither the first nor the 

first and second species (Eq. 5) can occupy the entire 
habitat. Clearly, this is also true for three species (n = 

3 in Eq. 9). Given this, it is also true for n = 4, and so 
on, as long as c, is finite and m, > 0 for all i. Thus, by 
induction, Eq. 9 demonstrates that it is impossible for 
a string of any number of species to occupy all sites in 
a habitat at equilibrium. 

This means that it is theoretically possible to find 
colonization rates and mortality rates that allow an 
additional species, species n + 1, to invade and stably 
coexist with any number of superior competitor spe- 
cies. No matter what the colonization and mortality 
rates of superior competitors might be, an inferior com- 
petitor with appropriate traits can always invade and 
persist. Thus, within the framework of this model, there 
is no limit to the number of species that can coexist 
stably in a spatially subdivided habitat, even though 
the best competitor would displace all other species 
from a habitat that was not spatially subdivided. This 
may be called the spatial competition hypothesis of 
diversity. 

If all species have identical mortality rates, m, Eq. 
8 becomes the simple relationship that species n will 
be able to invade and persist only if its colonization 
rate is 

An inferior competitor must have a colonization rate 
that is greater than the universal mortality rate divided 
by the square of the proportion of the habitat left open 
by its superior competitors. Thus, the requisite colo- 
nization rate rises quite steeply as the amount of open 
space declines. 

Multispecies dynamics 

In this model (Eq. 6), interactions that start away 
from equilibrium lead to damped oscillations (Figs. 2- 
4). The dynamics of two species are simple. The su- 
perior competitor is unaffected by the inferior species 
and displays logistic (sigmoid) growth. Because of its 
higher colonization (Fig. 2A) and/or lower mortality 
rate (Fig. 2B), the inferior competitor can more rapidly 
fill an empty habitat, but is brought to equilibrium as 
the superior competitor approaches equilibrium. 

For four species that have identical colonization rates 
but differ in mortality rates, the superior competitor 
(species 1) and the next best competitor have dynamics 
much as illustrated in Fig. 2, but the two next poorer 
competitors have more complex dynamics (Fig. 3A). 
A similar pattern occurs for four species with identical 
mortality rates but different colonization rates (Fig. 
3B). There need be no relationship between the equi- 
librial abundances of species and their competitive 
abilities. The poorest competitor can have the highest 
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FIG. 2. Dynamics of competition among two species, with 
species 1 being the better competitor. (A) Species 1 had col- 
onization rate c, = 0.2 and mortality rate m,  = 0.1 yr I .  

Species 2 had c, = 0.8 and m, = 0.1 yr I. Both species had 
initial proportional abundances of 0.01. (B) Here, species 1 
had c, = 0.6 and m, = 0.4 yr I. Species 2 had c, = 0.6 and 
m, = 0.1 yr I. Both species had initial proportional abun- 
dances of 0.0 1. These, and all other simulations in this paper, 
represent iterative solutions to Eq. 5, using the NDSolve rou- 
tine in Mathematics (Wolfram 199 1). 

equilibria1 abundance (Fig. 3C). In these and other nu- 
merical solutions of the model (Eq. 6), all species at- 
tained their predicted equilibria, independent of initial 
abundances, suggesting that multispecies equilibria are 
globally stable. Once the best competitor attains its 
globally stable equilibrium, the equation for the next 
best competitor takes on the form of the equation for 
the first species, and the second species goes to equi- 
librium. This should propagate down through any 
number of species, leading to global stability for the 
multispecies equilibrium point. Mathematical global 
stability, however, does not mean that perturbations 
would not cause the loss of biodiversity in a real eco- 
system. Ecosystems have a finite size. Forces not in- 
cluded in this simple model, such as demographic sto- 
chasticity (May 1973) and random walks to extinction, 
can prevail during the periods of low abundance that 
follow a perturbation. 

Consider, also, the dynamics of competition among 
40 species (Fig. 4A-C). For these cases, species were 
chosen to have colonization and mortality rates such 
that their equilibrial abundances formed a geometric 
series, i.e., p, = z(l  - z)'-', where i refers to species, 
with species 1 being the best competitor. For this case, 

Time (1 )  

FIG.3. Dynamics of competition among four species, with 
species 1 being the best competitor and species 4 the poorest. 
(A) In this case, all species have identical colonization rates 
(c, = 0.5 for i = 1, 4), but different mortality rates (m, = 0.4, 
m, = 0.225, m, = 0.1 1, m, = 0.05 y r l ) .  All species had initial 
abundances of 0.0 1. (B) Species have identical mortality rates 
(0.1 yr-I), but different colonization rates (c, = 0.333, c, = 

3.7, c, = 4 1.15, c, = 457.2). All species had initial abundances 
of 0.05. (C) Colonization rates (c, = 0.421, cZ = 0.377, c, = 
0.369, c, = 0.476) and mortality rates (m, = 0.4, mZ = 0.3, 
m, = 0.2, m, = 0.1 yr I) give an equilibrium in which the 
best competitor is the rarest. 
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Time ( t  ) Time ( t ) 

Time ( t  ) Time ( t ) 

FIG. 4. Dynamics of competition among 40 species, as determined by numerical solutions of Eq. 5, with species 1 the 
best competitor and species 40 the worst. (A) Species had traits shown in Fig. 5A, with m = 0.1 yr-I for all species. Each 
species had an initial proportional abundance equal to 75% of its predicted equilibrial abundance. (B) Species traits identical 
to those of part (A), except initial abundances depended on their colonization rates. The initial abundance of species i was 
c,/31, for I = 1, 40. This meant that 99.5% of sites were filled initially, and that better colonists occupied more sites, initially, 
than did poorer colonists. (C) Species traits identical to those of part (A), except all species were initially equally rare (each 
had a proportional abundance of 0.005). (D) Species had the traits shown in Fig. 5B. Species differed in both colonization 
and mortality rates. The best competitor, species 1, had the lowest mortality rate. The mortality rate of species i was m, = 

0.04 + 0.01i. The colonization rates required, for species with these mortality rates and competitive abilities, to attain the 
equilibrial abundances shown in Fig. 5B were calculated with Eq. 8. 

the best competitor is rare (z = p ,  = 0.04), poorer equilibrium first, followed by the next best competitor, 
competitors are progressively rarer, and all species have and so on (Fig. 4A-C). All species that reached equi- 
identical mortality rates (m = 0.1 yr-I). Eq. 8 gives librium by the end of the simulations had attained their 
the colonization rate each species must have to obtain predicted abundances. However, many species had not 
its equilibrial abundance (Fig. 4B). The dynamics of reached equilibrium after 100 generations (assuming a 
competition among the 40 best competitor species are generation time of 100 yr). Another case, in which 
illustrated for cases in which all species started either species differed in both mortality and colonization rates, 
close to their equilibrial abundances (Fig. 4A), or at an gave qualitatively similar dynamics (Fig. 4D). If spe- 
initial density that was greater the greater their colo- cies are rarer, or have lower mortality rates, the ap- 
nization rate (Fig. 4B), or at identical but rare abun- proach to equilibrium is even slower. 
dances (Fig. 4C). 

In all cases, all 40 species persisted for the entire Limiting similarity 

simulation. Initially they displayed complex dynamics, An interesting feature of this model of spatial com- 
but were kept from extinction by the stabilizing effect petition is its analytical limit to the similarity of ad- 
of spatial subdivision and by the infinite habitat that jacent species in the competitive hierarchy. This lim- 
the model assumed. The best competitor approached iting similarity means that it is not sufficient for an 
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inferior competitor to have a lower mortality rate and/ 
or a higher colonization rate than its next best com- 
petitor. Rather, its traits must differ from those of its 
superior competitor by a finite amount that depends, 
mainly, on the abundance of its superior competitor. 
Although this can be shown for the general case in 
which species differ in both mortality rate and colo- 
nization rate (by solving Eq. 8 for p, = 0),  it is most 
easily understood for the two special cases below. 

Identzcal mortality rates. -If all species have iden- 
tical mortality rates, Eq. 8 can be used to show that 
the minimal colonization rate of species n (i.e., the rate 
that givesp,, > 0)must be greater than the colonization 
rate of species n - 1 by an amount that depends on 
the amount of open space left by the superior com- 
petitors: 

Having c,, > c,-, > . . . > c ,  is not sufficient to assure 
that all n species can coexist. Rather, there is an ana- 
lytical limit to similarity. For example, if the amount 
of open space left by species 1 to n - 2 was 0.1 and if 
the amount of open space left by species 1 to n - 1 
was 0.02, then for species n to exist (j,,> 0) ,  it must 
have a colonization rate more than c, ,(0.1)/(0.02),or 
5c,-, . This means that an inferior competitor that had 
a colonization rate ( 5  times c,,-, would not persist. 
The difference between i n 2and in-,is just p ,  ,. Thus, 
it is mainly the abundance of the next best competitor, 
p,,-,, that determines the limit to similarity. For in- 
stance, if ?,-, = 0.1, and if species n - 1 were rare, 
e.g., p ,,-, = 0.01, then c, would just have to be 1.1 1 
times c,,-, (1.1 1 = 0.1/0.09). Or, if p,. , = 0.001, then 
c,, would only have to be 1.0 1 times c,,- , . When su- 
perior competitors are rarer, species may be more sim- 
ilar in their colonization abilities and still coexist, as- 
suming that all species experience the same mortality 
rate. This limit to similarity need not limit species 
diversity. An inferior competitor with a sufficiently 
greater colonization rate can always invade and coexist, 
no matter how abundant its superior competitor might 
be. 

Identical colonization rates. -There is a comparable 
limit to similarity in mortality rates if species have 
identical colonization rates, c. For species 1 to attain 
an equilibrial abundance ofp , ,  it must have a mortality 
rate of m ,  = c( l  - p , ) . For species 2 to have an abun- 
dance of p,, its mortality rate must be m ,  = c(1 - 2p,  
- p,). In general, for the nth species to have an equi- 
librial abundance of p,,, Eq. 7 can be used to show that 
its mortality rate must be 

The less open space there is in a habitat, the lower must 

be the mortality rate of an inferior competitor if it is 
to coexist with a group of species that have identical 
colonization rates. However, all mortality rates must 
be >O. If Eq. 12 is constrained to have m ,  > 0 ,  species 
n can only exist (i.e., have c,, > 0 in Eq. 12) if 

Thus, this model leads to a surprising prediction. Once 
superior competitors fill at least half a habitat, it is 
impossible for an inferior competitor to coexist, even 
if it were immortal, if all species have identical colo- 
nization rates. However, until this limit is reached, it 
is possible for a series of species to stably coexist if 
inferior competitors have sufficiently lower mortality 
rates than their next better competitors. 

Assuming that Eq. 13 holds, Eq. 12 can be used to 
derive the analytical limit to similarity in mortality 
rates for competitively adjacent species with identical 
colonization rates: 

For instance, if the amount of open space left by species 
1 to n - 1 were 0.55, and that left by species 1 to n 
- 2 were 0.65, then rn,, must be less than rn,,-, /2 .  
Values of m ,  lower than this would lead to a greater 
equilibria1 abundance, p,, for species n. If rn, were 
greater than this, species n would go extinct. 

These analyses have shown that competitively ad- 
jacent species can coexist only if the colonization and/ 
or mortality rates of the inferior competitor are suffi- 
ciently different from those of its next best competitor. 
However, interspecific differentiation in longevity is 
only possible if less than half of the sites in a habitat 
are filled with superior competitors, whereas differ- 
entiation in colonization can occur for any abundances 
of superior competitors. 

Interspecific trade-offs and 
stable coexistence 

As Pacala (1986a, b), Ives (1988), and Hanski and 
Cambefort (1 99 1)  have shown, neighborhood inter- 
actions and local dispersal increase intraspecific com- 
petition relative to interspecific, and thus encourage 
stable coexistence. Hassell et al. (1991) have shown 
that spatial subdivision and local dispersal can cause 
intriguing spatial dynamics and stabilize predator-prey 
dynamics. Nisbet and Gurney (1 982) demonstrated that 
the persistence time of a population with a metapopu- 
lation structure increases exponentially with the num- 
ber of habitat sites. The multispecies model developed 
here demonstrates that spatial subdivision has similar 
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effects on competitors, allowing a potentially unlimited 
number of species to stably coexist in a physically ho- 
mogeneous, equilibria1 habitat. 

This model, which I call the spatial competition hy- 
pothesis, provides an alternative explanation for the 
high species richness of many communities of sessile 
organisms. It demonstrates that the concept of stable 
coexistence of a competitor and a fugitive (e.g., Mac- 
Arthur and Wilson 1967, Horn and MacArthur 1972) 
can be extended to an unlimited number of species. 
Coexistence occurs even though a single species would 
displace all others from any given site. Diversity does 
not require large-scale disturbances, but can occur 
through plant-by-plant replacement in a subdivided 
habitat in which all species are limited by and compete 
for a single resource. Spatial subdivision, which is an 
unavoidable result of the sessile life-style, thus may be 
a major factor favoring high local diversity in com- 
munities of sessile organisms. Moreover, even in mo- 
tile species, neighboring individuals are more likely to 
interact than are more distant individuals. Thus, the 
spatial competition hypothesis may also explain co- 
existence of motile competitors. 

Species that coexist by the mechanisms assumed by 
the spatial competition hypothesis must have the ap- 
propriate two- or three-way interspecific trade-offs 
among competitive ability, colonization ability, and 
longevity. Allocation differences may cause unavoid- 
able trade-offs between competitive and colonization 
abilities (e.g., Werner and Platt 1976). Biomass and 
nutrients allocated to competitive structures (root for 
nutrient-limited plants or leaf and stem for light-lim- 
ited plants) cannot be allocated to dispersal structures 
(seed, fruit, pappus, rhizome, etc.). This is the major 
axis of interspecific differentiation among plants at Ce- 
dar Creek (Gleeson and Tilman 1990). 

However, it is uncertain if there must be a trade-off 
between longevity and competitive ability. Many spe- 
cies that are good nutrient competitors are nutrient- 
conserving evergreens (Chapin 1980). Because nutrient 
conservation is often accomplished via increased tissue 
longevity, better competitors may be more long lived. 
Similarly, better competitive ability for light requires 
greater allocation to stems, and such plants are only 
successful if they survive long enough to reach the 
canopy. Thus, differentiation between dispersal and 
competitive ability may be more important than dif- 
ferentiation between longevity and competitive ability 
in allowing multispecies coexistence, but this question 
merits additional study. 

Limits to diversity 

These results indicate that there need be no limit to 
species richness in a spatially subdivided habitat with 
a single limiting resource, assuming that species have 

the appropriate two-way or three-way trade-offs among 
competitive ability, colonization ability, and longevity. 
What might limit diversity in such a system? 

The spatial competition model assumed that a hab- 
itat was infinitely large. For instance, species n was 
assumed to be able to invade and stably persist if p,, 
> 0. In a finite habitat, there are a finite number of 
sites, and a species will be present only if it always 
occurs in at least one site. This means that a species 
would go extinct if its abundance fell below some min- 
imum value, p,,,,, which should be inversely dependent 
on area. This would restrict species richness to a finite 
value. There would be an absolute upper bound on 
species richness of llp,,,,, and species richness would 
be lower than this by an amount that depended on the 
actual abundances of the more abundant species. 

Demographic stochasticity would further reduce 
species richness. Demographic stochasticity is the tem- 
poral variance in population density caused by ran- 
domness in the reproduction and mortality of individ- 
uals (May 1973). The lower the average density of a 
species, the greater, on a percentage basis, is the fluc- 
tuation around the mean caused by demographic sto- 
chasticity (May 1973). These fluctuations could cause 
species to go extinct even though their p was greater 
than P,,". 

Evolutionary limits to dispersal ability or longevity 
would also limit diversity. For inferior competitors to 
invade and coexist, their dispersal abilities must in- 
crease as one over the square of the amount of space 
unoccupied by superior competitors (Eq. 10). If there 
were a maximal possible dispersal rate, c,,,, and a 
minimal possible mortality rate, m,,,, then, for any 
given distribution of relative species abundances, there 
would be a limit to diversity even in an infinitely large 
habitat. 

Dispersal limitation might also explain latitudinal 
diversity gradients. Glaciations and associated climatic 
changes are greater toward the poles. Species that pres- 
ently occupy more poleward habitats have had to mi- 
grate great distances in response to climatic change 
(Davis 198 1, 1986) and have experienced major range 
contractions. These would have increased the chance 
of extinction of temperate or arctic species, especially 
less well-dispersed species. If historical climatic changes 
led to shorter migration distances per unit time in sub- 
tropical or tropical habitats than in temperate and arc- 
tic habitats, the more equatorial habitats would have 
experienced lower extinction rates and thus have great- 
er species richness. 

Comparisons with Hubbell and Foster 

The spatial competition model analyzed here differs 
significantly from the model of Hubbell (1979) and 
Hubbell and Foster (1 986), even though both models 
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consider colonization and mortality in spatial habitats. 
Hubbell (1979) and Hubbell and Foster (1986) sug- 
gested that there were a few major guilds of tropical 
tree species, including gap specialists. However, they 
felt that many more species coexisted within a guild 
than could be explained by interspecific differentiation. 
They hypothesized that each guild contained large 
numbers of functionally identical species for which 
competitive displacement would not occur. Rather, the 
abundances of such species would be determined by 
random local mortality and colonization. This leads to 
random drift in abundances, with the ultimate outcome 
being random walks to extinction of all but one species. 
They suggested that the rate of such extinctions is slowed 
by spatial subdivision in large habitats, and that the 
extinction rate may be as low as the rate of evolution 
of new species. Thus, they hypothesized that rain forest 
diversity may be maintained by a loose balance be- 
tween speciation and the slow extinction of function- 
ally identical species. 

The spatial competition hypothesis provides an al- 
ternative explanation for species-rich plant commu- 
nities. Tree species differ in dispersal and longevity 
(e.g., Howe et al. 1985, Lieberman and Lieberman 
1993). If there are the requisite interspecific trade-offs 
among dispersal, longevity, and competitive ability, 
the spatial competition model demonstrates that these 
could allow stable persistence of numerous species 
competing for a single resource. Although this coex- 
istence requires limiting similarity, most rain forest 
trees are rare. The model predicts that rare species can 
be quite similar and still stably coexist (Eqs. 10 and 
13). 

For instance, of the 40 species that stably coexisted 
in Fig. 4, the 10 best competitors (numbered 1 to 10) 
have sufficiently similar colonization rates (Fig. 5A, B) 
that it might be tempting to classify them as a guild of 
superior competitors. The 10 best dispersers (num- 
bered 3 1 to 40) might similarly be lumped as a guild 
of gap specialists. However, the trade-offs associated 
with their small interspecific differences in colonization 
and competitive abilities allow their long-term, stable 
coexistence. Subtle interspecific trade-offs, which are 
ignored when species are grouped as guilds, may allow 
the long-term coexistence of numerous species. Clear- 
ly, further data and analyses are needed to test among 
the spatial competition hypotheses, the hypothesis of 
functionally identical plant species guilds, and other 
hypotheses (e.g., Janzen 1970, Huston 1979, Tilman 
1982) of the maintenance of highly diverse plant com- 
munities. Because species in the spatial competition 
model can persist during long periods of wide-ampli- 
tude oscillations in abundances (Fig. 4), the existence 
of "nonequilibrial communities" does not refute the 
spatial competition hypothesis. It is also possible that 

Equilibrial Abundance ( p , )  

Equilibrial Abundance ( p , )  

FIG.5. (A) The relationship between colonization ability 
and equilibria1 abundance for the 40 species used in the sim- 
ulations of Fig. 4A, B, and C. (B) This same relationship, but 
for the 40 species used for the simulation of Fig. 4D. 

several diversity-promoting mechanisms are operating 
simultaneously in tropical rain forests. For instance, 
seed and seedling predation may keep dominant com- 
petitors rare (Janzen 1970), and this rarity may allow 
many more species to coexist by the mechanisms as- 
sumed by the spatial competition hypothesis. 

The random drift hypothesis (Hubbell and Foster 
1986) and the spatial competition hypothesis may op- 
erate simultaneously. As Hubbell and Foster (1986) 
noted, the more similar two competitors are, the slower 
should be the rate of competitive displacement. How- 
ever, the spatial competition hypothesis assumes that 
the rate of competitive displacement is constant, in- 
dependent of the similarity of the competing species. 
I have performed simulations with a model similar to 
the spatial competition model, but in which the rate 
of competitive displacement within each site was slower 
when competitive abilities were more similar. This 
modification often led to a several fold increase in the 
species richness of a finite habitat. 

This paper has focused on interactions within a phys- 
ically homogeneous habitat. An alternative explana- 
tion for species diversity is that habitats are spatially 
heterogeneous, and that such heterogeneity allows co- 
existence (e.g., Tilman 1982). Soils have considerable 
heterogeneity in nutrient content, and sites differ in 



January 1994 SPATIAL THEORY 

slope, elevation, aspect, and microclimate. Plant spe- 
cies can be differentiated with respect to each of these 
factors, and such differentiation may be a major cause 
of the changes in life-form and species composition 
along environmental gradients, including geographic 
gradients (Tilman 1988). However, within any small 
and fairly homogeneous region, such differentiation may 
be a less important determinant of diversity than the 
effects of competition in a spatially subdivided habitat. 

Testing theory 

There are a variety of observational and experimen- 
tal tests for determining if the diversity of a community 
is explained by the spatial competition hypothesis. This 
theory requires a two-way or three-way trade-off among 
colonization ability, competitive ability, and longevity. 
This information would be determined best by direct 
studies of these processes. Comparisons of allocation 
patterns might provide a reasonable approximation. 
For instance, because we know that Cedar Creek prairie 
is nitrogen limited, and because we know that alloca- 
tion to root is a good predictor of competitive ability 
for nitrogen, we can test for the requisite trade-off by 
comparing allocation patterns to root vs. reproductive 
structures. Such a comparison (Gleeson and Tilman 
1990) was the first to show that the major trade-off 
among our species was between colonization and com- 
petition. For light-limited communities, the compa- 
rable trade-off would be between proportional alloca- 
tion to stem (and height) vs. proportional allocation to 
seed. If the organisms living in a community do not 
have appropriate trade-offs among competition, dis- 
persal, and longevity, the spatial competition hypoth- 
esis cannot explain the biodiversity of that community. 

Experimental tests are preferable, but will require 
more time. If species have similar longevities, species 
abundances should be limited by their dispersal abil- 
ities, and this limitation should be greater for species 
that are better competitors. Thus, if the rate of arrival 
of propagules of a species were experimentally in-
creased, its abundance should increase. The best com- 
petitors should have the greatest increases in abun- 
dance following propagule addition. 

It should be possible to increase the species richness 
of a habitat by addition of low densities of propagules 
of species that can live in that region but that are absent 
from that habitat. If the propagules of any species were 
repeatedly added in high density, that species should 
displace and exclude all species that were poorer com- 
petitors than it. Thus, constant addition of numerous 
propagules of the best competitor should lead to the 
competitive exclusion of all other species. The dis- 
placed species should not be able to invade back into 
the habitat until propagule addition ceased and mor- 
tality caused the density of the superior competitor to 

thin back toward its equilibrium density. In contrast, 
repeated addition of numerous propagules of a poorer 
competitor should have no effect on its superior com- 
petitors, and only a minor effect on diversity. 

Propagule addition experiments could also be per- 
formed with a single time of propagule addition. In 
this case, there should be a short-term decrease in di- 
versity caused by addition of a superior competitor, 
but diversity should return to its former level as the 
abundance of the superior competitor returned toward 
equilibrium. Thus, in testing this theory, it is important 
to distinguish between short-term and long-term pre- 
dictions. 

We have begun experiments at Cedar Creek to test 
the applicability of the spatial competition hypothesis 
to our site. Preliminary results have shown dispersal 
limitation of species abundances. Many prairie species 
that were absent from a site, but present in a field or 
in nearby fields, germinated and grew when their seeds 
were added, i.e., when dispersal limitation was over- 
come. Addition of numerous seed or seedlings of a 
superior nitrogen competitor, little bluestem, is causing 
the displacement of other species from multispecies 
communities. However, it will be several more years 
before the long-term effects of such species additions 
are clear. 

Caveats 

The model presented here is an extreme simplifi- 
cation of the complexity of nature. It abstracts many 
essential features of competition among sessile organ- 
isms in a physically homogeneous habitat. More com- 
plex and realistic variations on this model are possible, 
and should give additional insights. For instance, re- 
source concentrations and resource competition could 
be modeled, as could the allocation basis of interspe- 
cific trade-offs among colonization, competition, and 
possibly longevity. An explicit model of resource com- 
petition would likely lead to slower rates of competitive 
displacement among competitively similar species, and 
thus increase diversity in a finite habitat. Random dis- 
persal could be replaced with neighborhood dispersal. 
However, numerous simulations (Pacala and Tilman 
1993) suggest that such modifications do not change 
the major qualitative predictions of the spatial com- 
petition model. 

Spatial structure is an unavoidable result of the dis- 
crete nature of individual organisms. It may allow an 
almost unlimited number of competing species to sta- 
bly coexist in a physically homogeneous habitat, even 
though a single species is the superior competitor in 
any glven site. The spatial competition hypothesis thus 
must be added to the list of hypotheses that may ex- 
plain the existence of highly diverse communities (re- 
viewed in Tilman and Pacala 1993). With few excep- 
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tions, all tha t  is  required to  explain the  stable coexistence 
o f  a large number  o f  species are  interspecific trade-offs 
i n  traits that  determine responses t o  ma jo r  environ- 
menta l  limiting factors. Tes ts  o f  these alternative hy- 
potheses a re  clearly needed. T h e  wise management  o f  
nature  a n d  the  preservation o f  i ts  biodiversity depend  
o n  knowledge o f  the  actual forces that  mainta in  bio- 
diversity i n  particular ecosystems. F o r  plants a n d  other  
sessile organisms, one  o f  the  ma jo r  forces m a y  well be 
embodied i n  the  spatial compet i t ion hypothesis. 
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APPENDIX 

STABILITY EQUILIBRIUMOF MULTISPECIES POINTS 
The local stability o f  a multispecies equilibrium point is 

determined by the eigenvalues o f  the Jacobian matrix, where 
the element in the iIh row and the jIh column o f  the matrix, 
4 , , , is 

and whereJ = dp,/dt (as in Eq. 5), and where I * means the 
expression is evaluated at equilibrium. 

Because the dynamics o f  a superior competitor are unaf- 
fected by the presence o f  an inferior competitor. q , ,  = 0 for j 
> i. This means that the Jacobian matrix is triangular, i.e., 
has a triangular wedge o f  zeros above the principal diagonal 
(where the principal diagonal is composed o f  the elements q,,, 
with i = j). The eigenvalues o f  such a triangular matrix are 
just the elements o f  the principal diagonal (e.g.. Noble 1969), 
1.e.. they are the terms q, , ,  for i = 1,n. There are as many 
eigenvalues as there are species. Because the addition o f  an 
inferior competitor (but better colonist/survivor) does not 
influence the dynamics o f  superior competitors, the addition 
o f  such species does not change the eigenvalues associated 
with the superior competitors. Thus, each species has a par- 
ticular eigenvalue associated with it. This value depends on 
the traits o f  this species and o f  all species that are superior 
competitors compared to it. As before, assume that the equi- 
librial proportional abundances o f  the species arep,,  
p2. . . . p,,. Then the partial derivative o f J  with respect to p, 
is: 

T o  evaluate this at equilibrium, it is necessary to substitute 
in. for each species i, the value o f  c, that allows that species 
to attain its equilibrial abundance. p,. These values are deriv- 
able by setting dp,/dt = 0 in Eq. 8. and solving for c,.T o  obtain 
the value for c, expressed in terms o f  the equilibrial abun- 
dances o f  all species. (p , .  p2, . . . p,), but not in terms o f  the 
colonization rates o f  the other species. it is necessary to first 
solve for the colonization rate o f  species 1, c , .  Thus. 

This value is then substituted into the equation for c2 to give 

The process can be continued, givinga value for the ithspecies: 

/ - I  

2 ( ~ , m , )+ 1 - 2 6 m,  
I I 

c, = ( :l:1 ('4.2) 

In order to obtain the eigenvalues o f  the Jacobian matrix, 
it is necessary to substitute the values o f  c, into Eq. A.  1 .  After 
rearrangement o f  terms, this yields the equation for the ei- 
genvalue associated with the i"' species. A,. where 

I f  a habitat contained a single species, the only eigenvalue 
would be A ,  = - m l p l l ( l  - p,),  which is always negative 
because m ,  amd p, are greater than 0. and p, is less than 1 .  
Thus, as long as the species exists in the habitat (0 < p, < 
I) ,  its equilibrium point is stable. By substituting in the equi- 
librial requirement that p, = 1 - m, lc , ,  it can be seen that 
A ,  = m ,  - c,.  For a habitat with two species. there are two 
eigenvalues. 

and 

Both o f  these are always negative for any biologically possible 
values o f  parameters (i.e.. 0 < m , ,  m2; 0 < p I ,  p2 < 1 ;  pl + 

p2 < I), and thus the two-species equilibrium point is locally 
stable. Indeed, as indicated in Eq. A.3, all eigenvalues are 
always negative, indicating that all multispecies equilibrium 
points defined by the model are always locally stable. as long 
asp, .  . . .p , ,  > 0 and Cp, < 1 .  


