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INTRODUCTION

The advent of fast, relatively inexpensive (thus, widely available) microcom-
puters is transforming the way we analyze data in ecological and evolutionary
research. Even more profound, however, are the associated changes in
questions asked, empirical methods used, studies conducted, and interpretations
offered. Now that an array of computation-intensive statistical methods is
newly available for general use, it seems particularly important to assess their
advantages and limitations, to note how they are currently being used, and
then to consider implications for the future.

I focus in this review on four related techniques known in the statistical
and biological literature as randomization (or permutation) tests, Monte Carlo
methods, bootstrapping, and the jackknife. 1 refer to them collectively as
resampling methods, because each involves taking several-to-many samples
from the original data set (randomization, bootstrap, jackknife) or from a
stochastic process like the one believed to have generated the data set (Monte
Carlo). Each of these methods is actually an extensive family of techniques
and specific applications that cannot be thoroughly examined here; instead, I
briefly characterize the focal methods and then survey the recent literature in
ecology and evolution to identify the issues most frequently associated with
these techniques. It emerges that resampling methods are well represented in
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data analyses related to some of the most important issues and intense
controversies currently in these fields of research.
The specific objectives of this paper are:

1. to acquaint a wider array of ecologists and evolutionary biologists with
these useful techniques, which, at least until very recently, have been
underemphasized or ignored in statistical training;

2. to document the association between certain research questions and one
or more of these resampling methods;

3. to emphasize the role of the focal methods in expanding the range of
feasible experimental designs and in shifting the conceptual basis of data
analysis;

4. to compare and contrast resampling methods with more standard
approaches, noting assumptions and other key features that bear on their
appropriateness for particular applications; and

5. to highlight methods that need clarification and development, in the hope
that these will soon be addressed by statisticians and biometricians.

The review is intentionally biased toward ecological studies, in accord with
my own research experience and interests. Simpler, univariate analyses are
emphasized in the interest of clarity and also because a review of computa-
tion-intensive multivariate methods in ecology is in progress (165). To respect
page limits on contributions to this volume, I have restricted the number of
examples cited and emphasized more recent papers most likely to contain
additional citations of relevant work. I assume here that readers are familiar
with rudimentary statistical concepts and basic methods.

The present review proceeds as follows: First, I describe briefly the four
resampling techniques, including a relatively straightforward example of each
from the literature of ecology and evolution. Next, I summarize results of a
systematic literature search for applications, including a computer search of
biological journals and edited volumes published during 1985-1990, and my
own search by hand through all issues of two prominent ecological journals
for the period 1985-1991. Resampling techniques are used to test for temporal
trends in the use of these methods and for differences in frequency of use
between ecological and evolutionary studies. Publications identified in the
search are classified by topic and subtopic, from which are distilled seven
major issues considered with.example applications in more detail. Focus then
shifts to the relation of resampling applications to classical and actively
developing statistical methodology. Finally, I discuss advantages, disadvan-
tages, and implications of these methods, highlight methodological questions
that deserve attention, and close with some specific recommendations.
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BRIEF DESCRIPTIONS OF THE FOCAL METHODS

Lucid descriptions and examples of these methods and computer programs
suitable for implementing them are available in recent books by Edgington
(64), Noreen (186), and Manly (163).

Randomization

Referring to the use of randomization tests in analyzing data, R. A. Fisher
once claimed that statistical “conclusions have no justification beyond the
fact that they agree with those which could have been arrived at by this
elementary method” (75). In a randomization test, the chance of type 1 error
under the null hypothesis (i.e. the p-value) is determined by repeated random
assignment of the data to treatment levels. The p-value is simply the proportion
of all data arrangements yielding test statistics at least as extreme in magnitude
as the value resulting from the arrangement actually observed (see Figure 1).

When the null hypothesis is that the observed magnitude of the test statistic
is (say) not larger than would be expected by chance (a one-tailed hypothesis),
then the extreme values to be counted in calculating the p-value are those
greater than or equal to the observed test-statistic value. When the null
hypothesis is that the observed magnitude of the test statistic is not different
from chance expectation (a two-tailed hypothesis), then separate counts are
made of values greater than or equal to the observed and of values less than
or equal to the observed; the lower of these counts is doubled and divided by
the total number of data arrangements to obtain the two-tailed p-value (subject
to the constraint that p < 1).

Data resampling requires pooling all data from the treatment levels (i.e.
experimentally established or “observed” groups) to be compared and then
reassigning data randomly and without replacement to the treatment levels,
keeping the number of observations per treatment level the same as in the
original data. In some cases, all possible redistributions of data among
treatment levels can be readily obtained, resulting in an “exact” randomization
test. In other cases, generally when the potential number of different
redistributions approaches or exceeds 10-10°, some of these (often about
10% are sampled with replacement for the test, which is then known as a
“sampled” randomization test.

Randomization tests are often based on standard test statistics (e.g. t, F); it
is thus the method of resampling the data and of calculating p that are
definitive, rather than the statistic used. But the potential to use special-purpose
or ad hoc statistics is a particularly important advantage of the randomization
approach (and of resampling more generally), since this may increase the
statistical power to accept the relevant alternative hypothesis (64, 163).
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Figure 1 Flow diagram of hypothesis testing via randomization tests, Monte Carlo methods, and
some types of bootstrapping techniques. Except for exact randomization when few samples are
needed, this logic is usually implemented using a computer program that generates and processes
a large number of samples  (typically n 1000); only rudimentary programming skills are needed,
unless the statistic is particularly complex or the data structure requires a sophisticated sampling
algorithm. See Edgington (64), Noreen (186), and Manly (163) for example programs. This
diagram is a slight modification of one on the cover (and Figure 1, p. 51) of E.S. Edgington’s
book (64).

The basic rationale for randomization methods is that under the null
hypothesis of, for example, no difference between treatment-level means, any
of the possible distributions of data among treatment levels is equally probable.
This equiprobability is assumed to follow from (i) random sampling of
populations being compared (contemporary applications generally avoid this
assumption, but those that invoke it are known as permutation tests), (ii)
random assignment of experimental units to treatment level, or (iii) for
nonexperimental studies, simply taking the data to be “exchangeable” among
levels in the absence of treatment effects (see 163, 250). However, random-
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ization tests of differences among means are sensitive to differences in
variances and other moments (e.g. see 15, 219, 242; contrary to assertions in
64, p. vi, and others), implying that none of the enumerated assumptions is
strictly sufficient. In lieu of defensible alternatives, a sufficient assumption is
that observed distributions of data are identical except for the features actually
compared in the test. See Table 1.

For example, consider the study by Loreau (156) on temporal niche
differentiation in carabid beetles. Loreau was interested in whether species
shifted their periods of activity seasonally such that niche overlap or another
index termed “mean competitive load” is reduced, as might be expected from
competition theory. The data consisted of biweekly activity levels by species
and habitat (correlated here with successional stage) over a four-year period.
Subject to some constraints on the timing of peak activity and on the

~ boundaries of the active period that were intended to preserve biological
realism, the observed temporal distribution of activity within a species was
seasonally shifted at random, and the two indices were calculated for each
species-habitat combination. For each species and habitat, this procedure was
repeated systematically (i.e. by exact randomization) when the total number
of distinct reorderings was less than 4000, or randomly with replacement of
reorderings (i.e. by sampled randomization) 2000 times when the total number
of distinct reorderings exceeded 4000. The p-values were determined as in
Figure 1.

Results differed among habitats, among constraints imposed, and among
species subsets considered. In the beechwood and pinewood habitats, p-values
for both response indices tended to approach or achieve statistical significance
as increasingly severe and realistic constraints were imposed on the random-
ization process. In these cases, niche overlap and mean competitive load
calculated from the original data were lower than 95% or more of the
corresponding values generated from the random seasonal shifts in activity
pattern. It is difficult to imagine how these hypotheses could have been tested
with these data by standard statistical methods. This example and the
continuing debate over the interpretation of such carabid data (53, 266, and
their references) indicate some of the challenges that can arise in attempting
to operationalize the null hypothesis and specify the most suitable random-
ization algorithm. Nevertheless, the overall pattern of statistical significance
in the present study does suggest increasingly distinct niche differentiation
from successional to “climax” beechwood forest, as would be expected
according to competition theory and some other possible interpretations.

Monte Carlo

In Monte Carlo methods, a particular random process (e.g. binomial coin flips
or a complex stochastic simulation model) is assumed to underlie the observed
data in determining confidence intervals or the expected response under the
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null hypothesis for hypothesis testing. This random process is then sampled
repeatedly (e.g. many coin flips are simulated or the simulation model is run
many times), with test statistics calculated in each case. For hypothesis testing
(e.g. is a particular coin unequally likely to produce “heads” or “tails”? —or—
do empirical observations differ significantly from the model’s predictions?),
the p-value is found from this frequency distribution of test statistics exactly
as for randomization (see Figure 1). In fact, randomization is generally
considered to be the special case of Monte Carlo tests in which the relevant
random process simply samples the distribution of test-statistic values
associated with equiprobable rearrangements of data among treatment levels
(163). Nevertheless, some differences in assumptions and restrictions arise in
comparing more typical Monte Carlo tests (i.e. those in which the observed
data are not used to implement the random process) and randomization tests
(see Table 1).

Monte Carlo methods are often used to generate confidence intervals
(whereas this is possible but uncommon and usually cumbersome with
randomization—e.g. see 163, p. 18-20). Though not particularly difficult, this
is procedurally more complex than hypothesis testing because it requires
accumulating and maintaining ordered arrays of extreme values of the statistic
(corresponding to the tails of the distribution) as these are generated (see
Figure 2, which illustrates the “percentile method”; more “adventurous”
methods, with clear advantages in some cases, are described e.g. in 67 and
69; for recent work on Monte Carlo methods see 12, 82, 85, and their
references).

Consider a demographic study of the colonial gorgonian Leptogorgia
virgulata using projection matrices and Monte Carlo methods to analyze
time-varying population growth (95). Field measurements of recruitment,
colony growth, and survival for five size classes over 24 months, supplemented
by other fecundity data, were used to construct 23 5 X 5 monthly projection
matrices. Each entry represented the expected number of individuals in the
row size class that arose by survival, growth, or reproduction from an
individual in the column size class one month before. Multiplying this matrix
by a column vector representing the numbers of individuals in each of the
five size classes at the beginning of the month projected by the matrix yielded
the numbers present in each size class a month later.

The less complex of two Monte Carlo applications in the paper concerns
determinations of elasticity (i.e. proportional contributions by recruitment,
growth, and survival rates to population growth rate) using the matrix
techniques. The question of interest in the gorgonian study was whether the
observed patterns in the data could be attributable simply to the general form
of the matrices rather than their biological details. If so, then an arbitrary
distribution of nonzero entries in the matrices should generate elasticity
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Figure 2 Flow diagram for constructing confidence intervals via Monte Carlo and bootstrapping
according to the percentile method. This requires a computer program that uses “tail arrays” to
collect and reorder the smallest and largest values of the statistics generated. If the confidence
level of interest is 100(1-a)%, where a is the corresponding significance level, and n values are
computed to estimate the confidence interval, then each tail array for two-tail limits will contain
1 + an/2 values (ignoring any fraction). Thus if » = 10000 and a = 0.05, then the tail arrays
ultimately hold the 251 largest and the 251 smallest values of the statistic. Initially, the two arrays
are filled by the first 502 values, such that the larger values are ordered in one tail and the smaller
values are ordered in the other. Then each subsequent value smaller than the largest in the lower
tail or larger than the smallest in the upper tail is ordered within the appropriate array, and the
least extreme value is eliminated; intermediate values, insufficiently extreme for either tail, are
not stored. After all n values have been calculated and ordered appropriately, the interval defined
by the least extreme value in each of the two tails is the confidence interval. One-tailed confidence
intervals are handled similarly. Suitable programs are provided by Noreen (186). With boot-
strapping, substantial bias can result from this straightforward approach in some cases (see 67
and 69 for some ways of dealing with this potential problem)

patterns and vital rates statistically indistinguishable from those observed. One
thousand random projection matrices were constructed with the same zero
elements as in the data matrices, but with all nonzero elements drawn from a
uniform distribution ranging from zero to one. (Note that if the nonzero
elements had repeatedly been randomly scrambled, rather than drawn from a
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particular statistical distribution, then this would have been classified as a
randomization test.) Some of the observed pattern did indeed seem to be
mimicked by the random matrices; but Monte Carlo tests showed that the
gorgonian recruitment and population growth rates used as test statistics were
significantly atypical of vital rates derived from the random matrices. So the
tests helped separate general features of such matrices from the system-spe-
cific information contained in the data. As in the carabid randomization
example above, it is difficult to see how any approach other than resampling
could have been useful here.

The Jackknife

The jackknife, like its all-purpose namesake, was intended to offer crude but
effective assistance when a more precise tool is unavailable (252). It provides
systematic methods of resampling the actual data using relatively few
calculations that can often be done efficiently on a calculator. The direct
results of these calculations are an “improved” (i.e. less sampling-biased)
estimate of some sample parameter (e.g. mean, kurtosis, intrinsic rate of
increase) and often of the approximate variance and confidence interval
associated with the estimate. The confidence interval is sometimes used in
hypothesis tests (occasionally the jackknifed data themselves, known as
pseudovalues, are used; see 114 and 180 for reviews on the jackknife).

Though higher-order versions may occasionally be useful (e.g. 194, 195),
the first-order jackknife is by far the most commonly used and proceeds as
follows: Suppose that the parameter of interest K (e.g. the true standard error
of the mean for the underlying normal distribution of means) is estimated
appropriately over the whole sample of m observations as k. Pseudovalues k;
associated with each observation i are then obtained as ki = k - (m - 1)(k.i- k),
where k; is just the standard parameter calculation with the ith observation
deleted from the sample. The expression on the right-hand side of this equation
is the sample parameter estimate minus a bias term, reflecting the deviation
of the i-deleted estimate k - ; from the full sample estimate k. The mean of the
pseudovalues K is then the jackknife estimate of K. The difference k - K
measures the overall sampling bias of the original estimate k (bias can, for
example, distort estimates of population density, particularly when the
individuals are strongly clumped in space; see 67 for derivations of the above
relationships).

Ignoring the correlations necessarily present among the pseudovalues,
calculating their variance s in the usual way, and dividing by the number of
observations then generates the variance s“/m of the jackknife estimate k.
Now the assumption that such jackknife estimates are based on normally
distributed error yields the parametric confidence interval for the estimate: k
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+ rs/m"?, where r* is the appropriate two-tailed critical value of the
t-distribution with m-1 degrees of freedom.

Note that the variance estimate requires assuming that the correlations
among pseudovalues are unimportant, but general conditions in which this
might be valid have not been established (163). The normality assumption,
though justifiable by the Central Limit Theorem for large sample sizes, is
difficult to evaluate with the smaller-sample applications where it is more
dubious. See Table 1.

In a study of interclutch intervals and reproductive success of feral pigeons
nesting on a building at the University of Kansas, Johnson & Johnston (131)
used the jackknife to test the relation between three selection parameters and
four morphological features. Over 600 banded birds were included in the study;
survival and reproductive activity were observed several times per week over
~a 17-month period and associated with measurements of body mass, tarsus
length, bill length, and bill width. The three selection parameters of interest
here were the standardized directional selection differential (i), the slope of
relative fitness regressed on the morphological trait; the standardized stabiliz-
ing selection differential (C), for which a positive value indicates disruptive
selection and a negative value implies stabilizing selection; and the standard-
ized directional selection gradient (B), resulting from multiple regression of
relative fitness on the combined morphological variables. Though this was
not explicitly stated, the parameters were presumably considered significantly
nonzero when the two-tailed confidence interval failed to include zero,
following the procedure for constructing the interval that is outlined above.

Results indicated a highly significant directional selection differential (i)
and gradient (B) for female body mass, and a significant directional selection
differential for female bill length, interpreted here as correlated selection. Thus
fecundity selection related to interclutch interval apparently “targets” female
body mass. In this example, for parameters of unknown statistical distribution
calculated over the whole dataset, only the jackknife and bootstrap and their
close kin could readily estimate the sampling variation required for hypothesis
tests.

The Bootstrap

Bootstrapping is a quite recent technique (66) that is still developing rapidly
and attracting much attention in the statistical literature (e.g. 57, 68, 77). Like
randomization and the jackknife, bootstrapping focuses on resampling the
actual data to reveal some of the subtler patterns they imply (in fact, results
obtained from the bootstrap are often closely approximated by those from the
jackknife—66). Here, the basic notion is that the data themselves, viewed as
a frequency distribution, represent the best available image of the frequency
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distribution from which they were drawn. Thus the bootstrap metaphor refers
to the sense in which the data are used in their own statistical analysis. To
bootstrap a confidence interval for a statistic (e.g. mean, skewness, or species
diversity) calculated from a single data set of m observations, for example,
simply requires m random draws with replacement per sample from the original
data, calculating the statistic, and repeating the process many times according
to the scheme illustrated in Figure 2. Here again, this simply specifies a
particular random process that technically represents a special case of the
Monte Carlo method.

Bootstrapping can also be used in hypothesis testing (e.g. 49, 76, 100); for
example, with data from each treatment level (or data set to be compared)
sampled with replacement separately, tests can be formulated according to
the extent of overlap between confidence intervals or by combining the
bootstrapped samples to calculate a test statistic (as in Figure 1; see 163, p.
28, and 186, p. 80). This can still be considered a special case of the Monte
Carlo method, but since separate random processes are used to generate the
separate samples from which the comparisons are made, the approach is quite
different from the usual Monte Carlo approach. Bootstrapping is distinct from
randomization, which redistributes the original data set over treatment levels,
and it contrasts with the parametric and less computation-intense jackknife
approach. By keeping the sampling process separate between the compared
treatment levels, bootstrapping should be less dependent than most other
statistical methods on similarity in underlying statistical distributions among
treatment levels (B. F. J. Manly, personal communication; see Table 1).

In an extensive study of predator and parasitoid selection pressure on gall
size of the goldenrod gall fly Eurosta solidaginis, Abrahamson et al (1) used
bootstrapping to avoid problems with non-normality and correlated samples
that arose in previous analyses. Selection intensities on gall size attributable
to natural enemy attack were calculated as the difference between the mean
gall diameter of the selected individuals and the population-mean gall diameter,
divided by the population standard deviation. For each of 20 populations and
two mortality sources (i.e. insects and birds), the observed number of linked
observations (gall size in mm, survival from the relevant natural enemy as O
or 1) were sampled with replacement from the original data, the selection
intensity was calculated, and this process was repeated 1000 times to generate
atwo-tailed confidence interval, as in Figure 2. An observed selection intensity
was considered significantly nonzero if its lower confidence limit was greater
than zero. Two selection intensities were considered significantly different if
their 95% confidence intervals did not overlap; this latter would be a very
conservative approach to hypothesis testing, except that the p-values were not
adjusted for the large number of comparisons implied.

The many significant selection intensities imposed by insects were all
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positive, and the few significant selection intensities imposed by birds were
negative. Taken together, natural enemies therefore seem to generate stabiliz-
ing selection on gall size, though the parasitoid effect predominated, resulting
in some overall directional selection for increasing gall size as well.

RECENT APPLICATIONS IN ECOLOGY AND
EVOLUTION

Overview

To determine how randomization, Monte Carlo, jackknife, and bootstrapping
methods are currently being used in the literature, I conducted a search of a
large computer database (BIOSIS Previews on-line database, 2100 Arch
Street, Philadelphia, Pennsylvania 19103-1399 USA) for the publication years
1985-1990 and directly examined all issues of the journals Ecology and
Oecologia for 1985-1991.

During the period of interest, approximately 9000 biological journals were
being abstracted by BIOSIS, apparently including all major journals in ecology
and evolution. Searching titles, abstracts, and key words yielded 391 references
from 154 journals and 11 chapters from books, once the few obvious mistakes
were eliminated by a direct scan of the abstracts. I relied on the BIOSIS
classification scheme to draw appropriate distinctions between references
classified as “ecology,” “evolution,” or both. It is possible that the Monte
Carlo category is somewhat inflated relative to the others, since the term is
sometimes used for a wider range of simulation methods than just the statistical
techniques of interest here; but the direct examination of journals indicated -
that any such effect would be minor.

Some results of the computer search are presented in Table 2. All four
resampling methods are well represented in the recent literature, with Monte
Carlo methods overall about twice as frequent as bootstrapping, which in turn
was almost twice as common as either randomization tests or the jackknife.
The hypothesis that resampling methods are becoming more common in the
literature was corroborated statistically, though the evidence to support this
for any particular method was more equivocal (randomization, Monte Carlo,
bootstrap) or clearly contradictory (jackknife) (tested by randomization; see
Table 2 and Appendix 1). Each of the four methods (and all taken together)
was used disproportionately in evolutionary studies relative to ecological
studies (Monte Carlo tests; see Table 2, Appendix 1), as suggested by the
observed proportions v of evolutionary studies (v = 0.144-0.360) relative to
the overall proportion in all papers published (0.098).

I scanned the methods and results sections and all figures and tables of the
1485 articles published in Ecology and the 2128 articles published in
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Oecologia from 1985-1991. (For 1985-1990 only, there were 1270 articles
in Ecology and 1841 in Oecologia.) Regardless of the authors’ original
designation, I classified methods as Monte Carlo when a mathematical random
process was executed repeatedly to generate an estimate of biological variation
(e.g. a confidence interval) or to test a hypothesis, following Figure 1.
Analyses specifically classified as binomial tests were excluded (except as
explicitly noted), though all were equivalent to exact randomization tests (see
below).

During 1985-1990, 87 or 6.9% of the Ecology papers and 53 or 2.9% of
the Oecologia papers included one or more of the focal resampling techniques.
(In Ecology, allowing for the 8 papers each using 2 of the methods, there
were 31 randomization, 33 Monte Carlo, 15 jackknife, and 16 bootstrap. In
Oecologia, with 3 papers each using 2 of the methods, there were 21
randomization, 22 Monte Carlo, 5 bootstrap, and 8 jackknife.) The BIOSIS
search was thus relatively inefficient overall (17/87 = 19.5% for Ecology,
and 10/53 = 18.9% for Oecologia,) and the efficiencies probably differed
among methods. (This is not particularly surprising, since statistical methods
may not often warrant mention in the title, abstract, or key words, though
some may be more likely to be mentioned than others.) The overall number
of ecology/evolution articles during 1985-1990 that used these resampling
methods can be very roughly estimated as the total number of articles identified
by the BIOSIS search divided by the mean of these two efficiencies expressed
as a decimal fraction, which to the nearest integer equals 2036. Clearly, a
thorough and comprehensive review of this and more recent material would
be overwhelming, both for reviewers and readers.

Combining the full 1985-1991 direct-examination data with the 1985—
1990 BIOSIS results and classifying the papers by content generated Table
3. Notice that some particularly controversial issues in ecology and evolution
(e.g. null models, size-ratio theory, detecting density dependence, phylogeny)
are well represented here, perhaps mainly to exploit the considerable flexibility
of resampling methods in applications involving nonstandard models and test
statistics. This flexibility can be a mixed blessing, however, as I note below.
The poor representation of behavior and behavioral ecology in the table is
probably artifactual, reflecting the separation of behavior from ecology and
evolution within BIOSIS.

Some Active Areas of Application

NULL MODELS, COMPETITION, AND COMMUNITY STRUCTURE Contemporary

interest in competition as a mechanism underlying community structure led
in the 1970s to the formulation of null (or neutral) models, with which
statistical tests of predicted patterns could be conducted (35, 223, 229). Since
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the notion of a probabilistic model that can generate the statistical distribution
consistent with a null hypothesis is the essence of Monte Carlo hypothesis
testing, Monte Carlo tests (e.g. 201, 223) and closely related exact random-
ization tests (e.g. 50 and 247, which referred to them using the broader term
“binomial tests”) were soon prominent in these analyses. The controversy that
erupted between those formulating null models for this purpose (42-44, 229,
247) and those considerably less enthusiastic about this approach (41, 56,
91-93) provides a cautionary tale: the potential for differing null models,
misunderstandings of methods, procedural errors, and alternative interpreta-
tions of similar results can be high with resampling methods (cf Monte Carlo
tests in 43, 44, and 93; see 262). Nevertheless, the null model approach seems
to have taken hold in the recent literature, partly via Monte Carlo methods
(Table 3; see 202, 265).

There is much relatively untapped potential to use resampling tests for
detecting community organization (e.g. guild structure: 124, 129, 265) and
community similarity (118, 263, 264), and for testing whether environmental
factors can account for community structure (29, 83). In assessing species
diversity and the variation associated with these estimates, the jackknife has
been used most often (e.g. 110, 194, 195), but bootstrap applications (e.g. 23)
may become more common.

Much of the null model controversy has addressed the distribution of species
abundance and presence/absence on islands (214, 244, and analogous situa-
tions considered in 265). A good overview of this issue and problems
associated with choosing appropriate constraints on randomization is provided
by Manly (163, p. 233 ff).

Numerous recent attempts to test for niche differences (34, 109, 162) and
to measure overlap (2, 107) have used resampling methods, particularly
randomization (125, 152, 265; see 202). In other cases, temporal niche shifts
have been tested by resampling (61, 206, and the binomial or exact
randomization test in 50). Simberloff & Boecklen’s forensic analysis of Santa
Rosalia (230) stimulated several resampling tests (96, 271, and the equivalent
of exact randomization in 19) of the constant-size-ratio hypothesis from
Hutchinson’s original paper (120).

Considerable recent work in plant ecology has focused on competition from
immediate neighbors (27, 136, 251) and related distortion of the population
size distribution (133, 143, 227). The geometry of access to resources and
thus of potential response to competition has also been characterized (136,
215). These plant neighborhood-competition and size-distribution citations
involve the gamut of resampling methods considered in this review, both for
hypothesis tests (27, 251) and to estimate confidence intervals for the Gini
coefficient (an indicator of size inequality; 133, 227) or to calculate skewness
by jackknifing (143).



Table 3 Classification by research topic and statistical method of the relevant papers identified in the
BIOSIS survey (1985-1990) and by direct examination of journals (Ecology and Oecologia, 1985-
1991)!

Monte
TOPIC/Subtopic Randomization Carlo  Bootstrap  Jackknife
Competition (total) 31 36 20 17
Null models 3 12 0 0
Niche differentiation, overlap & breadth 14 9 4 4
Size-ratio theory of niche displacement 1 3 0 1
Niche-shift dynamics & interaction intensities 3 1 1 0
Plant size hierarchies 1 0 7 3
Plant neighborhood competition 4 5 0 1
Community structure (total) 14 16 7 7
Detecting organization 2 5 2 0
Diversity 2 2 3 6
Community similarity 7 2 2 1
Temporal variability and stability 1 5 1 2
Detecting density dependence 7 4 0 0
Spatial patterns and processes (total) 15 33 3 9
Dispersion & spatial pattern 6 17 1 3
Dispersal & migration 5 7 1 4
Scale effects 4 3 0 1
Demography (total) 5 47 10 8
Population size of density 2 19 6 7
Vital rates 2 9 4 7
Growth, size & age relationships 1 7 0 0
Stock-recruitment relations 0 5 0 0
Agricultural/fisheries 0 8 0 2
Environmental factors (total) 4 58 10 3
Absorption & scattering of light 0 16 1 0
Air-quality models & indicators 0 10 4 0
Aquatic environmental quality/toxicology 2 8 3 2
Lake & stream acidification 1 4 1 0
Surface, soil & groundwater 1 13 0 1
Behavior/behavioral ecology (total) 10 16 2 2
Social organization 3 2 0 0
Foraging 6 7 2 1
Evolution/evolutionary ecology (total) 61 44 49 19
Selection intensity & response 0 10 3 4
Genetic differentiation & correlation 1 2 2 2
Mutation rates 0 7 0 0
Morphometric comparisons 3 2 2 3
Phylogeny 5 1 33 9
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Statistical and modeling methods (total) 41 63 43 44
Analysis of variance 3 2 0 1
Regression & correlation 5 8 0 5
Mantel’s test 7 0 0 0
Discriminant function analysis 2 2 0 5
Nearest-neighbor analysis 1 6 0 0
Sensitivity, error & uncertainty 0 14 1 3
Power analysis 0 6 0 1
Confidence intervals & variance 1 4 31 16
Bias estimation & reduction 0 10 7 8
Grand total 145 330 139 114

! Direct search of the two ecological journals located all of the references on detecting density dependence and almost
all of the competition studies. The statistical and modeling methods references were derived both from BIOSIS and from
the direct search. References for the remaining topics were obtained almost entirely or entirely from the BIOSIS search.
Data shown here were collected using a lengthier list of topics and subtopics, but those categories accumulating fewer
than five citations are not shown; topic totals include the additional citations from subtopics not shown, and the grand
total includes citations from topics not shown. Many of the papers are tallied in more than one category.

An underutilized randomization method of very wide potential application,
particularly in community analyses, is Mantel’s test (119, 166; see the
description and examples in 163 and 165). This flexible technique tests for
correlation between two (or more) square distance matrices. Typically, entries
in one matrix express Euclidian distances (or some alternative measure)
between (say) species in quantitative multivariate features (e.g. in diets), and
the other matrix may represent a postulated pattern among species (e.g. zeroes
and ones indicating membership or not in the same guild). By randomly
reassigning rows and columns of one matrix to species, recalculating the
correlation between corresponding off-diagonal matrix elements (where the
test statistic is the sum of the multiplicative products of these corresponding
matrix elements), and then repeating this sequence many times, the statistical
tendency in the original data for the postulated pattern to match the distance
pattern can readily be assessed (e.g. see 198).

DETECTING DENSITY DEPENDENCE ~ Another controversy of long standing in
the ecological literature concerns the role of density dependence in population
dynamics. (See e.g. 11, 55, 267, and their references for evidence that the
controversy continues unabated.) Two important milestones were the initiation
of experimental field tests of density dependence (70) and the formulation of
statistical methods to detect density dependence in temporal sequences of
density data (26). Resampling methods have proven useful in both of these
approaches, particularly the latter (48, 51, 54, 203, 204, 210, 258, 259; an
application to analysis of a field test is in progress—D. M. Johnson, T. H.
Martin, L. B. Crowder, P. H. Crowley, in preparation).

Though concerns have been expressed about the potential for detecting
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density dependence in density sequences (84), recently developed methods,
particularly the two tests based on randomization methods by Pollard et al
(204) and Reddingius and den Boer (210), appear sufficiently powerful to be
useful (48, 51, 259). Recent variations on this randomization theme have been
used to evaluate bias in k-factor analysis (258), to extend the notion of
detecting density dependence to the community level (48, 51), and to derive
testable predictions about the direction of density changes (48, 51).

The Pollard et al (204) “randomization test” and the Reddingius and den
Boer (210) “permutation test” both involve scrambling the order of the
observed changes in log-transformed density (a measure of population growth
over the time interval) for comparison with the observed sequence. Pollard et
al (204) used the correlation coefficient between density at the start of each
interval and the associated change in density during the interval as the test
statistic (density dependence implies an inverse correlation; the randomization
test avoids the problems inherent in the analogous parametric approach noted
in 159 and 239). Reddingius and den Boer (210) used the log-range between
the highest and lowest densities reached in the density sequence as the test
statistic (density dependence implies a small log-range). Other test statistics
may be more appropriate or powerful in particular cases (cf the “violation
number” statistic in 48 and 51). It may often be helpful to use several different
tests and test statistics on the same data set, since the test results are sometimes
complementary (51, 259), though this may raise concerns about adequately
protecting the chance of type 1 error over all tests.

SPATIAL PATTERNS AND PROCESSES Characterizing spatial patterns and pro-
cesses is a major challenge in contemporary ecological research. A diverse
array of resampling approaches has been used for this purpose. Descriptive
methods include assessing the spatial distribution of sparsely sampled points
and the spatial areas most closely associated with point locations (e.g. tree
locations—236 and 136, respectively), and particularly spatial autocorrelation
(149, 232). Hypothesis tests have been used to detect nonindependence of
animal locations (237, 248); variations in territory size (249); differences in
dispersion among size classes, species, and quadrats (105, an application of
Mantel’s test); differences in association of plant distribution and abundance
with taxonomic composition vs vegetation structure (222, also via Mantel’s
test); and an association between spatial distribution and temporal dynamics
(228). Monte Carlo methods have improved and extended the classic nearest
neighbor analysis of Clark & Evans (39; see 33; 151; and 163, p. 21-23 and
chapter 7).

In other cases, geographical limits of populations have been established
(220), and the implications of spatial scale (4, 122, 215) and of environmental
heterogeneity (4, 215, 222) have been addressed.
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In considering insect dispersal processes, Monte Carlo simulation has been
used to evaluate the need for a stochastic formulation to predict dispersal
(253). Error associated with estimates of the diffusion coefficient (160, 188)
or of the radius of patch detection (103) has been assessed primarily with the
Jjackknife.

ESTIMATING POPULATION SIZE AND VITAL RATES Resampling methods, par-
ticularly Monte Carlo, are now in fairly common use to reduce bias and
determine error associated with estimates of population density (111, 173,
181). The “smoothed bootstrap” (226) and randomization tests (171, 269)
have been used to detect density changes, mainly in non-experimental studies.

One of those last randomization examples (i.e. 269) invoked an approach
known as MRPP (multiresponse permutation procedures—176-178). MRPP,
a special case of Mantel’s test (163, p. 209), is conceptually consistent with
graphical representations of the data and readily extends to multivariate
problems. With this method, predefined groups (e.g. sites, treatments) can be
tested for differences using standard statistical distance measures, from which
a test statistic is derived and then assessed by ordinary randomization
procedures (Figure 1). Interestingly, standard ¢ and F tests and common
nonparametric tests are special cases of MRPP, though practitioners argue
that nonstandard formulations are generally more appropriate (269).

Following the comparison of jackknife and bootstrap methods by Meyer et
al (175), there has been much recent interest in measuring and testing for
differences in demographic costs of predator defense (13, 212, 260) and of
other environmental factors (88, 139), as measured by the per-capita increase
rate of zooplankton. (See 95 for an assessment of temporal changes in the
per-capita increase rate derived from dominant eigenvalues of a matrix model.)
Resampling methods have also been applied to tests and error estimates for
other vital rates (birth rate: 58; mortality: 153; relative growth rate: 37,
transmission rate of an insect virus: 63; many different vital rates: 254),
reproductive effort (86), and extinction rate (199, 200).

ENVIRONMENTAL MODELING ~ As the need for reliable environmental predic-
tions and monitoring has steadily increased, abroad range of relatively realistic,
quantitative models has appeared in the basic and especially in the applied
ecological literature. A focal issue in many of these studies is evaluating the
model’s fit to data; for probabilistic models, Monte Carlo methods are often
the best option and have commonly been used.

With regard to aquatic environments, resampling has been applied in
toxicological models (20, 24, 221) and laboratory tests (205), time-series
analysis of BOD data (197 via the “Bayesian bootstrap™), testing sensitivity
of lakes to phosphorus loadings (28, 150), estimating an index of water quality



426 CROWLEY

(97), and assessing the impact of acid deposition (62, 128, 132). Applications
in soil and groundwater systems include those on soil hydraulic properties
(117, 234), estimating runoff (10, 60, 99), and monitoring groundwater quality
(155, 185, 240). In the atmosphere, resampling techniques have been used
with models of carbon dioxide uptake and exchange (121, 138, 268), for
impact assessment of radionuclide fallout (21, 211, 261), and especially in
air-quality models and indicators (e.g. 25, 101, 108).

An important component of many climate and plant-growth models, both
aquatic and terrestrial, is absorption and scattering of incident solar radiation.
Monte Carlo applications are particularly common in these studies (e.g. 5,
38,94).

EVOLUTIONARY PROCESSES AND RATES Resampling methods figure promi-
nently in analyses of natural, sexual, and group selection. Examples include
the introductory case studies of the jackknife and the bootstrap early in this
review (1, 131), studies determining the magnitude of sexual selection (172,
187) and groﬁp selection (78, 102), and others concerned with various
responses to selection (142, 182, 257).

Rates of evolution have been assessed and contrasted via resampling
applications (78, 90, 140), as have mutation rates (79, 106, 189, 190) and
evolutionary implications of genetic drift (189, 190, 217). In an analysis of
taxon extinction rates, Raup & Sepkoski (209 and references therein) used
randomization tests to identify significant periodicity of major extinction
events in the geologic record (also 116; see 116 and 193 on speciation
periodicity), but Quinn (207) argued that bootstrapping is more appropriate
for this purpose (see 16 and the overview in 163, p. 192 ff).

All four resampling methods have been used to detect genetic differentiation
between populations based on immunologic (225), electrophoretic (45, 59),
and nucleotide-difference (216, 246) data. Discriminant function analysis,
particularly with the help of Monte Carlo (225) or randomization (238)
methods, can prove useful in such studies.

PHYLOGENY Phylogenetic analysis has evolved rapidly since the 1970s with
widespread use both of molecular techniques and of computer simulation and
data analysis. Pioneering simulation studies by Raup et al (208) demonstrated
the possible importance of stochastic processes and potential biases in
interpreting phylogenies. Some of the early work on null models emphasized
biogeographic data (e.g. the binomial or exact randomization test of 247; also
see 41 on the avoidable and unavoidable biases in such studies), and the
usefulness of statistically contrasting proposed phylogenies against a null
pattern is becoming more widely recognized (73; see the bootstrap approach
of 89 and an exact Monte Carlo method in 233).
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An important recent development was the formulation of techniques for
establishing confidence intervals for monophyletic groups (jackknifing over
taxa: 146; bootstrapping over characters: 72; see 196 for a comparative
evaluation of these and related methods). Felsenstein’s frequently used
approach analyses character data contained in a species X character matrix.
Bootstrap samples of characters (or, strictly, of the columns of species-spe-
cific values for particular characters) are used to construct alternative
phylogenetic trees; the percentage of these containing a monophyletic group
present in the tree based on the original data then estimates the confidence
that the group is indeed monophyletic. Inherent assumptions that characters
were sampled randomly and evolved independently raise some concerns about
the method’s validity (72, 73, 224) but apparently have not deterred applica-
tions of this and related bootstrapping approaches (e.g. 126, 127, 270).
Bootstrapping clearly predominates in recent resampling studies of phylogeny
(Table 3), including both cladistic analyses (e.g. 47, 145, 147) and the phenetic
studies emphasized above.

Another issue of current interest concerns whether particular patterns
derived from phylogenetic data can be considered nonrandom. Here, random-
ization tests have been used to scramble character values among species to
determine whether the tree derived from the original data required significantly
fewer evolutionary step-changes than the trees derived from scrambled
character values (nonrandomness was detected in 6 but not in 7; also see an
analogous cladistic analysis in 192).

Statistical Methodology

RELEVANT TYPES OF ANALYSIS There is much statistical and biometrical
research in progress continuing the development of resampling methods
(particularly the bootstrap). Moreover, to a greater extent than with other
statistical approaches, each new application tends to extend the methodolog-
ical possibilities because of the ad hoc nature of resampling analysis. Here, I
note how resampling methods have been used to supplement or improve
standard statistical methods and to stimulate or enhance new research
initiatives as well. )

Resampling methods avoid some of the more restrictive assumptions
involved in standard regression and correlation analyses (e.g. see 64, p. 197),
and there are now many published applications (e.g. regression: 30, 81, 170;
correlation: 123, 249, 256). The useful generalized correlation methods known
as Mantel’s test and multiresponse permutation procedures (MRPP) have
already been described and characterized in the literature summary above.
Analysis of variance deserves special attention because of its central role in
the design and analysis of experiments and because of restrictive assumptions
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that can proliferate with complexity of the design (191; 64, p. 58 ff; recent
applications include 130, 162, and 168). Help needed from statistical
researchers on problems associated with ANOVA is noted below.

Many multivariate methods are currently being revitalized and extended via
resampling (e.g. cluster analysis: 148, 184, 255; discriminant function
analysis: 14, 29, 80; principal components analysis: 241; indirect gradient
analysis: 144). It is primarily the methods readily applicable to single samples
(Monte Carlo, bootstrap, jackknife) that are of interest in this context, though
randomization can be useful for discriminant function analysis (163, 238).
See Manly (163 and especially 165) for thorough review of multivariate
resampling applications.

Many other standard issues and approaches in experimental design and data
analysis have been addressed with resampling methods. Some of the more
important of these are assessing errors associated with sampling (2, 103, 256)
or direct measurement (3), estimating the power of hypothesis tests (32, 87,
130), determining and reducing bias (2, 173, 183), and determining the
appropriate sample size (22, 154, 164).

In empirical studies, the need for methods of analyzing the ecological
response to large-scale perturbations (31, 169) has led to some resampling
applications associated with intervention analysis (Monte Carlo: 158) or
randomized intervention analysis (randomization tests: 32). The approach here
is usually based on paired systems, one experimental and one control; each is
monitored extensively before and after the experimental system is manipulated,
so that some of these observations can be assumed essentially independent
(though autocorrelation is directly assessed). This general approach or a
successor may prove valuable, particularly where replicated experiments are
infeasible, but additional care should be taken to ensure that the null hypothesis
is tested against an appropriate alternative (e.g. by transforming to reduce
heteroscedasticity or other distributional differences that may confound the
test; see 71 and 242).

In modeling studies, there is much current interest in incorporating age or
size structure (36, 174) or explicitly representing individuals (52) within
population models. Moreover, optimization models now more commonly
include stochastic elements (e.g. see 161) or parameter uncertainties that
complicate interpretation. In these and similar cases, resampling methods can
prove particularly useful in characterizing the model’s behavior and evaluating
its consistency with empirical observations (e.g. age structure: 137; individ-
ual-based model: 157; optimization: 213).

CLOSE RELATIONSHIPS WITH MORE STANDARD METHODS The resampling
techniques of interest here are all closely related to the more standard and
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widely familiar statistical methods. By virtue of conceptual simplicity and the
large number of nonparametric tests it has spawned, randomization can be
considered fundamental to the standard methods (17, 46, 134). Transforming
data to ranks is primarily a device to reduce data sets to a general form that
permits construction of nonparametric significance tables, with entries at low
sample sizes determined by randomization and at higher sample sizes by
normal or chi-square approximations to the randomization results. The first
three commonly used tests in Table 4 are examples of these; the sign test is
also a kind of rank sum test. Fisher’s exact test and the binomial (goodness-
of-fit) test are directly calculated cases of exact randomization. The tests listed
in the table are just a few of the more common nonparametric tests found in
the Ecology-Oecologia sample.

Monte Carlo methods are generally used to derive statistical tables for tests
based on data assumed to follow particular distributions, such as 7, F, and x>
tests. In the Monte Carlo tests of interest here, the actual statistical distribution
may be unknown, so long as the relevant stochastic process can be simulated
according to the scheme in Figures 1 and 2. In some cases among the Ecology
and Oecologia articles, a smaller number of simulations was used to draw
conclusions without a formal test (e.g. 104, 245) or were compared with
observations using standard categorical tests (e.g. 55, 141) or parametric tests
(e.g. 74, 98). Such hybrid approaches may often prove useful where the
underlying assumptions can be met, but in several of these cases, the standard
Monte Carlo test might have been more defensible and straightforward.

Applications of the jackknife involving hypothesis tests or determination
of confidence limits rely on parametric critical values and significance tables
(see above). Though the bootstrap is not inherently tied to parametric methods,
one area of active development is known as the parametric bootstrap, in which
the standard error of the mean is bootstrapped and then used in parametric
analyses as with the jackknife (e.g. see 67, 186, 231). Of course, the

Table 4 Percentages of papers published in Oecologia
(1985-1991) featuring some common nonparametric tests,
all of which are (or are equivalent to) randomization tests.

Test . Percentage
Mann-Whitney 11.3
Spearman rank correlation 7.1
Wilcoxon matched-pairs signed-ranks 4.7
Fisher’s exact test 2.7
Sign test 1.3

Binomial test 1.2
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asymptotic convergence of statistical sampling distributions on the normal
distribution at sufficiently large sample sizes is implied by the Central Limit
Theorem.

DISCUSSION
Advantages and Disadvantages of These Methods

An attempt to sort out the pros and cons of resampling methods relative to
the more standard statistical techniques raises many issues of varying subtlely
and complexity (Table 5). When their stringent assumptions are met, para-
metric procedures maximize power (i.e. the chance of rejecting a false null
hypothesis in favor of a true alternative), for a specified type 1 error rate (i.e.
chance of falsely rejecting a true null) (186). But rarely at small or moderate
sample sizes can all of the assumptions be known or convincingly demon-
strated to apply. The conservative approach is then to resort to standard
nonparametric methods or resampling.

Nonparametric methods are generally slightly to considerably weaker than
the stronger of parametric and resampling methods for several reasons.
Essentially all nonparametric techniques in common use were necessarily
designed for minimizing computation. In some cases, this resulted in inherently
low power (e.g. the sign test—see 135). In others, a loss of power or inadequate
protection of the type 1 error rate may be attributed to reducing data to ranks,
approximations related to ties in rank tests, continuity corrections at low
frequencies for categorical tests, or the possibility of inaccurate approxima-
tions in some tables at intermediate numbers of observations (64). Often, the

Table 5 Key features of three categories of statistical methods

Standard
Nonparametric
Feature Standard Parametric Methods ~ Methods Resampling Methods
Statistical power High (when assumptions met) ~ Moderate High
Known by researchers  Very widely Widely Sometimes & increasing
Acceptance Widespread Widespread Common & increasing
Standardization Very high High Moderate
Flexibility Low Moderate High
Assumptions Moderate-strong Moderate Weak-moderate
(see Table 1) (robust to some departures)
Population or sample Population Sample Population
(except randomization)
Time & effort cost Moderate Somewhat Higher & decreasing
lower
Conceptual complexity  High Moderate Low-moderate
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available tables seriously constrain the analyses by incompleteness (e.g.
Friedman’s ANOV A-by-ranks), by providing only one-tailed or only two-tailed
significance values (Fisher’s exact test and chi-square, respectively), or by
providing only a rough indication of the p-value’s magnitude (most nonpara-
metric tests) (see 64).

In contrast, randomization tests yield about the same significance level as
parametric methods when the parametric assumptions are met (115, 218) but
may have more power than parametric methods when data are from non-nor-
mal distributions (64, p.94; 135). Less is known about circumstances in which
Monte Carlo, bootstrap, and jackknife methods may be more powerful than
standard parametric analysis (but see examples in 67).

An obvious current advantage of using standard parametric and nonpara-
metric techniques is that they are widely known and accepted by editors and
other researchers, though resampling methods are now clearly in common use
as well. Yet bootstrapping may have been swept into the mainstream of
ecological and particularly evolutionary research somewhat ahead of a full,
balanced evaluation of its capabilities and shortcomings. Bootstrap confidence
limits and hypothesis testing are not always reliable (e.g. see 67); some
familiarity with current methodological advances and perhaps some ad-hoc
checking could prove important, and use should be restricted to cases where
randomization tests and parametric methods are inappropriate (163, 186).

Standardization and flexibility of statistical methods must trade off, to some
extent. The psychological shift associated with the conceptually simple
resampling approach, in which the data analyst necessarily controls and
understands each step from hypothesis formation to designing a sufficiently
powerful test statistic (and perhaps the test itself) to calculating an intuitively
meaningful p-value, can be “liberating” (186). Otherwise infeasible experi-
mental designs (e.g. those based on nonrandom sampling or requiring
nonstandard response variables) become available with resampling methods.
But this degree of versatility carries the cost that other defensible test statistics
or procedures for conducting the test itself may lead to different conclusions
(e.g. the survey of “null models” above)—or as a worst case even undermine
the objectivity of the data analysis (see 9 and 113). It is thus important to
consider a range of alternative test statistics and procedures and to justify the
choices made, ideally before the data are analyzed. It should be clear that the
appropriate alternative hypothesis would indeed be supported by rejecting the
null; an instructive case is the randomization test of differences between
means, in which the null hypothesis can be rejected for identical means but
different variances (242).

The striking differences in assumptions underpinning the classical and
resampling methods (Table 1; 186, p. 84-92) necessarily constrain the options
to an extent that is often overlooked or ignored by editors, referees, and
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researchers. Making dubious assumptions should obviously be avoided where
possible, but this should be balanced against the tacit assumptions involved
in using some of the more speculative resampling methods (particularly the
bootstrap and jackknife).

Randomization tests (and by implication their derivative nonparametric
tests) apply only to the samples themselves, not to some underlying population
that may have been sampled. This obviates the need for random samples and
for certain assumptions about the population of origin, but it also lengthens
the interpretive extrapolation from the observed results to the general situation
or population of interest. Some such extrapolation is almost always necessary
in any case, and this problem is of greater theoretical than applied relevance
(64).

Finally, resampling methods currently require on average more expenditure
of time and effort per analysis than do classical methods, largely because of
the necessary computer programming. In fact, the required programming is
often quite straightforward, and programs for many common applications are
widely available in the literature (e.g. 64, 163, 186) or as shareware. Soon,
commercial mainframe and microcomputer packages will be available (186).

Implications for Interpreting and Communicating Results

In hypothesis testing, the interpretation of results necessarily hinges on the
p-value, or at least on its magnitude relative to the critical value. An attractive
feature of resampling methods is that the direct calculation of the p-value
obviates the discrete decision-theory distinction between significant and
nonsignificant results, cleft sharply if arbitrarily at a knife-edge critical value.
Instead, the p-value can simply be understood to measure the degree of
consistency between the data and the null hypothesis, though the classical
significance levels (0.05, 0.01, etc) retain their utility as benchmarks.
Moreover, the directly calculated p-value may be much easier to communicate
to nontechnical decision-makers; as noted in the introduction, in a random-
ization test of a difference between two means, the p-value is simply the
proportion of random assignments of data to treatments that gives a difference
between group averages at least as large as the difference obtained in the
experiment (64, p. 10).

As with other statistical parameter estimates, an error estimate for the
p-value is desirable, particularly where this error reflects only a moderate
number of repetitions (e.g. 1000) for a resampling method (sampled random-
ization, Monte Carlo, or bootstrapping). In the latter case, the 100(1-a)%
confidence interval is well approximated by p * t1.o(p(1-p) /m)"? with an
infinite number of degrees of freedom, where a is the significance level, 1.q
is the critical value of the ¢ distribution for significance level o, and n is the
number of repetitions (e.g. see 186, p. 34). Note that these error bounds on
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the p-value reflect variation derived from the intensity of resampling. More
speculatively, it may be possible in some cases to obtain error bounds on the
p-value associated with empirical sampling variation using the bootstrap or
jackknife, but I am unaware that this has yet been attempted.

In research reports, error estimates via resampling generally require little
fanfare—only the name of the method and the number of repetitions (if
applicable). Hypothesis testing requires more information in the methods
section, including specification and justification of the null and alternative
hypotheses. Unless the approach is exotic or particularly central to the
presentation, references to support resampling methods are unnecessary. The
method, number of repetitions (if applicable), magnitude of the test statistic,
and p-value (with confidence interval when appropriate) generally appear
parenthetically with results of a hypothesis test.

Methodological Issues That Deserve Attention

Much statistical research remains to be done to develop, improve, and evaluate
these resampling techniques. Under the general theme of robustness, both
parametric and resampling methods need to be further examined and compared
in their sensitivity to non-normality, non-equivalence of distributions (e.g.
unequal variances), and sample size. Also, what are the implications for
randomization tests of nonrandom assignment to treatment levels and for other
resampling and parametric tests of nonrandom sampling? Ideally, such studies
should focus on features typical of small-to-moderate-sized samples and the
ways such data are actually gathered, rather than exclusively on the charac-
teristics of large statistical populations from which such samples may be
drawn (64).

Until resampling methods became generally feasible relatively recently, the
available statistical methods were sufficiently constraining that the formula-
tion of null and alternative hypotheses has been relatively straightforward and
unambiguous. Now that the horizon for these hypotheses has widened
considerably, perhaps new and useful guidelines can be devised that will help
practitioners to match hypotheses more effectively to tests and test statistics.

Many of the more complex descriptive and hypothesis-testing techniques
traditionally based on relatively assumption-bound parametric methods can be
effectively refitted as resampling methods (see above and 163, 165). Of
particular importance in ecology and evolution are methods that relate directly
to common experimental designs, like analysis of variance. ANOVA has
traditionally been considered robust to departures from the standard parametric
assumptions, though not all agree (e.g. 18, 243), and more complex variations
(e.g. factorial ANOVA, ANCOVA, MANOVA) can be more vulnerable to
violations of parametric assumptions (e.g. 191). In parallel with further studies
of robustness, the development of resampling ANOVA and its variations
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should continue (e.g. 8, jackknife ANOVA; 130, randomization ANOVA;
162, bootstrap ANOVA), and controversies like contrasting views on inter-
action terms in factorial ANOVA (see 64 vs 163) need to be resolved.

Further statistical research on Monte Carlo methods and especially on
bootstrapping will continue to attract immediate interest and additional
applications in ecology and evolution.

Some Specific Recommendations

1.

Resampling methods should be part of basic statistical training in
ecology and evolution. At least until these methods are incorporated into
mainframe statistics packages, this will require some computer-program-
ming skills as well. In exchange, perhaps less emphasis can be placed
on standard nonparametric methods.

. Parameter estimates should be accompanied by estimates of the associ-

ated variation. Resampling methods make it possible for this principle
to be very broadly (if not universally) applied.

. With small-to-moderate sample sizes, maintain a healthy skepticism

about the appropriateness of parametric analysis. Even failures to reject
normality and equal variances as null hypotheses are rarely conclusive,
since the power of tests to evaluate them is low at the relevant sample
sizes. When the random process that generated the data is statistically
uncharacterized, the conservative approach is to use defensible methods
making the fewest strong and unverifiable assumptions.

. Transformations should be used to improve the equivalence of distribu-

tions in randomization tests in essentially the same way that these are
used in parametric analyses. This should help neutralize a potential
problem with standard randomization methods that has often been
unrecognized.

. Where equivalence of distributions is unlikely to hold or to be achieved

by transformation, multisample hypothesis tests can be conducted by
bootstrapping. With this approach (termed “bootstrapped randomiza-
tion” in 186), data for different treatment levels are bootstrapped
independently before the test statistic is calculated. In our present state
of ignoratice, bootstrapping should not ordinarily be used where para-
metric or randomization methods apply.

. For confidence intervals and hypothesis testing, other more theoretically

defensible methods should generally be used instead of the jackknife.
The jackknife is particularly useful for eliminating bias in parameter
estimates (67), as a check or extension of the bootstrap (68), or in cases
where the other heavily computation-intensive methods are not feasible
67).

. Where possible, researchers should attempt to ensure that their exper-
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imental units constitute a random sample of some population of interest.
Though it may often be unclear how to accomplish this, the object is
to retain defensible options for the statistical analysis. When the case
can be made, it may be useful to explicitly identify the population that
has been sampled randomly.

8. In the absence of random sampling, hypotheses comparing two or more
samples with equivalent distributions should be tested by randomization.
Randomization can also be used to construct confidence intervals,
though these tend to be relatively conservative (64).

9. Use randomization, Monte Carlo, or bootstrapping methods instead of
standard nonparametric methods, particularly when maximizing power
is essential. Any nonparametric test can be replaced by a potentially
more flexible and powerful but otherwise equivalent resampling test.

10. Whenever possible and appropriate, use a large number of repetitions
in resampling tests (=20000). This is particularly important when it can
influence the way the data are interpreted (e.g. when the p-value is near
0.05). For randomization, n = 1000 and n» = 5000 are generally
considered minimal for tests at the 5% and 1% significance levels,
respectively (64, 65, 167).

11. When using resampling methods, define null and alternative hypotheses
with special care. Justify these choices in the methods section of the
research report.

12. More attention should be paid to the applicability of assumptions
underlying statistical analyses by researchers, editors, and referees.
With resampling methods becoming widely known and commonly used,
standards for acceptably thorough and rigorous data analysis should
continue to rise.

A summary of some common situations arising in data analysis and the

most appropriate methods for dealing with them is presented in Table 6.
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Table 6 Recommended methods.

Empirical Distribution(s) Preferred
Purpose Sampling sample size' (or underlying model) method
Confidence intervals Random Large Any Parametric
and single-sample Random Small-moderate  Normal Parametric
hypothesis tests Random Small-moderate ~ Known, but non-normal> Monte Carlo
Random Small-moderate ~ Unknown? Bootstrapping
Non-random  Any Any Randomization®
Multisample Random Any Equivalent Parametric
hypothesis tests Random Any Non-equivalent? Bootstrapping
Non-random  Any Equivalent Randomization
Non-random  Any Non-equivalent? ---

'In practice, large and moderate sample sizes are generally distinguished subjectively.

2 Transformations of the data can at least sometimes reshape the distribution(s) adequately for parametric analysis (with
random sampling) or randomization tests (with non-random sampling), though this may prove difficult to demonstrate
convincingly.

3 Awkward to implement, and tends to yield conservative confidence limits.

and Chauncey Curtz for new perspectives on null hypotheses; Production
Editor Nancy Donham for grace under pressure; Marcel Dekker, Inc., for
permission to use a slightly modified version of E.S. Edgington’s diagram as
Figure 1; John Lawton for hosting my sabbatical year at the Centre for
Population Biology; and Lillie, Sarah, and Martin for being patient and
understanding when the crunch came. I acknowledge funding from the
National Science Foundation grant INT 9014938 and a Visiting Research
Fellowship from the Royal Society of London.

APPENDIX: HOW THE DATA OF TABLE 2 WERE ANALYZED

I used randomization and a Monte Carlo method to test two a-priori
hypotheses concerning the data summarized in Table 2. The rationale and
procedure used in each case are briefly described here as examples of how
this general approach can be implemented.

Hypothesis 1: The focal methods considered in this review are becoming
more commonly used over the last several years in ecology and evolution.

The BIOSIS literature search over the six publication years 1985-1990 on
topics in ecology and evolution (Table 2) provides the basis for a test. To
assure adequate sample sizes for each separate method, references fitting either
or both of these categories for a particular publication year were pooled,
yielding publication frequencies for each of the six years to be tested for trend.

Hypothesis 1 predicts a positive trend in publication frequency over years,
generating a one-tailed test against the null hypothesis of no trend. I chose
the linear regression coefficient b or least-squares slope of publication
frequency as a function of publication year to be the response measure. (It
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can be demonstrated that using the correlation coefficient r for this purpose
necessarily produces identical results; moreover, the much simpler metric
2xiyi, where x; and y; are the coordinates of the ith data point, is equivalent
to either of these and was the measure actually used in my tests—see 163,
pp. 91-92.) Testing Hypothesis 1 then required calculating the observed b =
bo (or the simpler equivalent) and demonstrating that a value as large or larger
is very unlikely to have arisen by chance alone.

Now if a trend-free null process generated the observed sequence, then there
should be nothing special about the order in which the publication frequencies
were observed; any reordering should produce a statistically equivalent
sequence (163, p. 92). There are 6! = 720 different orderings of six numbers.
Calculating a regression coefficient b (or equivalent) for each and comparing
it with bo indicated the proportion of these as large or larger than bo. This
proportion was taken to be the probability p that the observed sequence could
have been generated by the same kind of trend-free process that produced the
other 719 sequences. When p was smaller than the relevant significance level
(generally 0.05), I rejected the null hypothesis in favor of the alternative (i.e.
Hypothesis 1); otherwise I was unable to reject the null, and Hypothesis 1
was not supported.

This exemplifies systematic randomization, which determines exact p-val-
ues. My Pascal computer program (written in Turbo Pascal 6.0) to calculate
b, r, and p was just over 100 lines long, the majority of which were needed
to generate the 720 reorderings of the data. The solution could instead have
been found by sampled randomization using a much simpler algorithm (see
163), half as many program lines, and some additional run time (roughly 30
sec rather than a fraction of a second on a typical 386/387 microcomputer).

Hypothesis 2: The focal methods considered in this review are used in
differing frequency in ecological versus evolutionary studies.

The data of Table 2 permit this hypothesis to be tested for each method.
Only the data in the “ecology” and “evolution” rows of the table were used.
First, the few papers within years classified as both ecological and evolutionary
were removed from the observed frequencies, eliminating a source of positive
correlation. The residuals were then summed along rows (i.e. over years), and
the overall proportion vo of evolutionary studies out of all ecological and
evolutionary studies for the given method was calculated as the evolution row
sum divided by the sum of the evolution row sum and the ecology row sum.
(This is of course equivalent to using the overall proportion of ecological
studies, which is simply 1-vo.)

To determine whether vo corroborated Hypothesis 2, I used a Monte Carlo
method to generate a null distribution of v-values for comparison with vo. If
a given method were used just as frequently in both kinds of studies, then the
observed frequencies in a particular year could have been generated as a
sample from a binomial process based on the frequencies of all ecology and



438 CROWLEY

all evolution studies in that year. I thus randomly generated the number of
studies observed in each year, with the chance of any particular study’s being
“evolutionary” equalling the “evolutionary” proportion in the given year, and
I tallied the distribution between evolution and ecology. When these distribu-
tions had been simulated for all six years of the sequence, the overall proportion
v of evolutionary studies was found as above from the evolution and ecology
row totals. Each of 20,000 such v-values was determined, and the proportion
as extreme or more extreme than vo became the p-value estimate. Though
this p-value was derived from a random sample of v-values and was therefore
inexact, the large number of iterations assured adequate precision. (See 163,
pp. 32-36. The precision of this p-value could be assessed using the
confidence-interval calculation described in the Discussion subsection entitled
Implications for Interpreting and Communicating Results.)

Special provision must be made for two-tailed tests of hypotheses like
Hypothesis 2. I noted whether vo was larger or smaller than the overall
expected value or mean of v, setting the computer program to calculate p
from v-values equally far or farther from the mean. As is typical for two-tailed
tests, this required that the significance level be halved to 0.025. Thus if 499
or fewer of the v-values were as extreme or more extreme than vo (as in all
cases in Table 2), then the null hypothesis was rejected and hypothesis 2
corroborated. My Pascal program to calculate vo and p was just over 50 lines
and was straightforward to write; the substantial number of iterations required
about 10-60 sec to run on a 386/387 microcomputer, depending on the
observed publication frequencies for the method of interest.
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