
Chapter 12
Millennial-Scale Ecological Changes in Tropical
South America Since the Last Glacial Maximum

Dunia H. Urrego, Mark B. Bush, Miles R. Silman, Alexander Correa-Metrio,
Marie-Pierre Ledru, Francis E. Mayle, Gina Paduano, and Bryan G. Valencia

Abstract An analysis of rates of ecological change (RoC) from thirteen pollen
records from tropical South America is presented here. The analysis aims to identify
the periods of fastest change since the last glacial maximum (LGM) and possible
driving mechanisms. Despite rapid cooling periods, region-wide profound droughts,
fire and human disturbances, RoC analysis showed that the speed of these climate
changes never exceed the species response capabilities. Our results legitimize
concerns regarding the resilience of species to accommodate future change and
emphasize the urgency for integrative environmental measures.

Keywords Rates of ecological change · Climate change · Eastern Andes · Western
Amazonia

12.1 Introduction

Human modifications of the landscape coupled with the indirect effects of human-
induced pollution resulting in climate change pose synergistic threats to wildlife.
While tropical ecosystems have been forced to accommodate prior environmental
change (Colinvaux and De Oliveira 2000, Bush et al. 2004b, Mayle et al. 2004,
Jansen et al. 2007), it is possible that modern rates of change are so rapid, and
ensuing community disruption so severe, that we are poised on the brink of a major
extinction event (Brooks et al. 2002, Thomas et al. 2004). While tropical ecosystems
are known to be influenced by current climate change (Pounds 2001, Pounds et al.
2006), there are few data regarding tropical past rates of ecological changes and
how they compare with modern ones. Under current and projected future climatic
conditions, improbably fast migration rates will be required for species to track their
fundamental niches (Malcolm et al. 2006). This scenario is further complicated by
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human-induced changes of landscapes such as land use, reduced habitat availability,
and barriers to dispersal.

Assessments of rates of ecological changes in Europe and North America showed
that temperature and atmospheric CO2 fluctuations account for the greatest rates of
post-LGM (last glacial maximum) ecological change (Jacobsen et al. 1987, Huntley
1990, Williams et al. 2001, Shuman et al. 2005). In temperate systems the rates of
ecological change were probably slower than those of climatic fluctuations induced
by the meltwater pulse at c. 14 ka, the Younger Dryas (12.5–11 ka), and the 8.2 ka
cooling event (all ages are expressed in thousand of calibrated years BP and abbrevi-
ated as ka). Consequently, species may have existed in non-equilibrial assemblages,
giving rise to the peak occurrence of no-analog communities (e.g. Williams et al.
2004). Orlóci et al. (2006) detected a strong correlation between species com-
positional change and the Vostok temperature record in several sites worldwide,
including two records from eastern South America. Studies from gallery forest and
savanna systems in southeastern Amazonia reveal what appears to be an accelerating
rate of ecological change within the last 4000 years (Behling et al. 2005, Behling et
al. 2007). These increases were correlated with the intensification of human occupa-
tion and human-induced fires in the region. However, an integrative regional analysis
for western Amazonia, the area with the highest biodiversity, is lacking.

The extent of Holocene ecological variability in tropical South America was
traditionally considered small relative to Quaternary glacial and interglacial fluctu-
ations. This idea of relative Holocene stability was founded mostly on high-latitude
evidence of stable temperatures since c. 10 ka (Alley 2004). Recent tropical evi-
dence suggested that Holocene environmental change was greater than traditionally
thought and that it correlated with abrupt changes in precipitation and increased
human occupation (Mayle et al. 2000, De Freitas et al. 2001, Burbridge et al. 2004,
Bush et al. 2004b, Mayle and Power 2008). From these observations, Holocene
rates of environmental change were hypothesized to be greater than those of the
Late Pleistocene.

The purpose of this chapter is to review post-LGM rates of ecological change
from western Amazonian and eastern Andean records. We aim to identify periods
when the fastest environmental changes took place, and discern whether patterns
of change are the same in lowland and high-elevation systems. An analysis of the
possible driving mechanisms behind fast rates of change is also presented. In par-
ticular, we consider the effects of post-LGM rising temperatures, the role of abrupt
cooling events like the Younger Dryas (YD) and the 8.2 ka events, the influence of
mid-Holocene dry episodes, and the importance of fire and human occupation as
modifying aspects of the landscape.

12.2 Rate-of-Change Analysis

Paleoecological records offer an invaluable opportunity to answer questions regard-
ing the speed of past ecological changes and to improve our understanding of
past climate and human-induced variability in western Amazonia and the eastern
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Fig. 12.1 Geographic
location of sites used for the
rates of change (RoC)
analysis: Anden records (dots,
a–f) and western Amazonian
records (triangles, g–m). (a)
Junin; (b) Caserococha; (c)
Titicaca; (d) Chochos; (e)
Pacucha; (f) Siberia; (g) Pata;
(h) Sauce; (i) Bella Vista; (j)
Consuelo; (k) Chaplin; (l)
Chalalan; (m) Santa Rosa

Andes (Orlóci et al. 2002). The rates of change (RoC) are defined here as the
amount of ecological change per time unit, determined from pollen records. It is
comparable with velocity of change previously calculated by Orlóci et al. (2002).
Fossil pollen extracted from lacustrine sediments reflects the community compo-
sition around the lake and allows statistical comparisons to be made within and
between records (e.g. Birks and Birks 1980). In these analyses, plant compositional
changes were derived from fossil pollen analyzed at discrete points in time, herein
called time slices. We calculated RoC as the dissimilarity between pollen assem-
blages from two adjacent time slices divided by the time interval between them.
Records were used where the chronology was sufficiently robust to allow pausible
linear interpolations between dates and where sample intervals were relatively brief
(Figs. 12.1 and 12.2). The underlying assumptions of such analyses were that sed-
imentation was continuous between time slices and that ecological change was
continuous between samples. The RoC analysis was only attempted for core sec-
tions meeting these basic requirements. Age models constructed by original authors
were used when provided. In records where only radiocarbon dates were available,
age models were calculated based on calibrated ages using Calib 5.0.2 (Stuiver and
Reimer 1993, Stuiver and Reimer 2005) with linear interpolation between dates.

The dissimilarity between time slices was calculated as the Euclidean distance
among scores on the first three axes derived from ordination analyses (Hill and
Gauch 1980). This dissimilarity measure represented the geometric (Pythagorean)
distance between two samples in the ordination space and corresponded to the
change in the forest composition during a given time interval. The units of these
dissimilarity measures were fractions of each dataset’s total variability, which facil-
itates relative comparisons among time slices within the same record. However, it
should be noted that comparisons among records were done based on the trend of
RoC, as comparisons of the absolute magnitudes are meaningless. The DCA was
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Fig. 12.2 Age-depth curves and age error for thirteen paleoecological records used in the RoC
analysis (see Table 12.1 for source and site description)

performed on reduced pollen percentage matrices for thirteen paleoecological sites
from western Amazonia and the eastern Andes (Table 12.1 and Fig. 12.1). For all
ordinations, iterations were run until a stable solution was reached. The reduced
pollen percentage matrices resulted from applying an abundance and persistence
filter that preserves the main variability of pollen datasets, while eliminating the
noise caused by rare taxa (after Birks and Birks 1980). This filter retained terres-
trial taxa with at least 1% (abundance) and occurring in at least 5 time slices per
record (persistence). Spores and shoreline elements were excluded to avoid masking
terrestrial-vegetation changes. The decision for non-woody taxa such as Cyperaceae
was based on their role in the specific modern ecosystems of each site. Cyperaceae
were included in the analysis for sites where they were known to be important
components of the terrestrial vegetation (e.g. Titicaca, Chaplin and Bella Vista) but
excluded for sites where they mostly represent shoreline vegetation (e.g. Consuelo,
Pata, Chalalán).

12.3 Paleoecological Records

The RoC analysis is based on thirteen pollen records from western Amazonia and
the eastern Andes spanning at least the last 18 ka (Fig. 12.2 and Table 12.1). Andean
sites lie on the eastern slopes of the Andes and parts of the Altiplano ranging
from 2900 to 4100 m elevation (Table 12.1). Lowland sites include pollen records
between the Equator (Lake Pata in Northwestern Brazil) and 14◦S (Lakes Chaplin
and Bella Vista in eastern Bolivia) and from 100 m elevation to the modern lower
limit of permanent cloud cover (Lake Consuelo 1360 m.a.s.l.) (Table 12.1).
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12.3.1 Andean vs Western Amazonian Changes

Our RoC analysis illustrated clear differences between the timing and intensity
of ecological changes in lowland and high-elevation sites during the past 18 ka
(Fig. 12.3). Fluctuations in RoC were mostly concentrated in the Holocene period in
lowland records while montane sites showed conspicuous oscillations both during
the Holocene and the Late Pleistocene. In Lake Junin, located at 4100 m ele-
vation, peaks in RoC occurred between 13 and 11 ka (Fig. 12.3a). This period
of rapid change coincided with the final ice retreat identified from moraine pat-
terns in the lake’s catchment (Hansen et al. 1984). Lake Caserococha showed the
fastest RoC during the Pleistocene-Holocene transition between 13.1 and 8.5 ka
(Fig. 12.3b). These fluctuations that began 12.9 ka and lasted until 8.5 ka, pre-date
the Younger Dryas (YD) cooling event (12.5–11 ka), suggesting that this relatively
short-cooling was not the mechanism behind them (Paduano 2001). Mid-Holocene
lowstands were also reported for Lake Caserococha but were not detected as periods
of increased changes in the terrestrial vegetation. Lake Titicaca showed relatively
steady RoC during the Late Pleistocene (Fig. 12.3c). Although a series of pulses
were revealed around the YD episode, these changes have been attributed to the
onset of postglacial fires rather than cooling (Paduano et al. 2003). During the
Holocene, however, two periods of increased change were observed. The first period
dated between 8 and 6 ka, when several peaks in the RoC were associated with
reduced-moisture episodes (Paduano et al. 2003, Theissen et al. in press). The sec-
ond period of increased change took place in the Late-Holocene and corresponded
to a shift toward weedy vegetation associated with human activities (Paduano et al.
2003). Timing of this change coincided with the onset of Quinoa cultivation in
southern Peru (Chepstow-Lusty et al. 2003).

Laguna de Chochos (3285 m) showed marked oscillations during deglacial
phases from c. 14.5 to 11 ka (Fig. 12.3d), while the highest RoC occurred dur-
ing the early Holocene. Late-Pleistocene peaks coincided with a drought period
that lowered lake level between c. 9 and 7.2 ka (Bush et al. 2005). During this
period, a Polylepis forest dominated the landscape and fire frequency increased
at Chochos. At c. 1 ka this record showed a marked increase in RoC, probably
related to human occupation of the site (Bush et al. 2005). Human intervention was
also inferred to account for the highest RoC in Lake Pacucha (3050 m) (Valencia
2006) between c. 6 and 3 ka (Fig. 12.3e). Increased abundance of Ambrosia and
Amaranthaceae-Chenopodiaceae were attributed to the construction of agricultural
terraces and Quinoa cultivation by pre-Colombian peoples (Chepstow-Lusty and
Winfield 2000, Valencia 2006). Between 12 and 6 ka, two periods of reduced pre-
cipitation at Lake Pacucha were evidenced from the replacement of Isöetes and
Myriophyllum by Cyperaceae in the shoreline vegetation (Valencia 2006), reduc-
tion of freshwater diatoms, and increased calcium carbonate in the sediments
(Hillyer et al. 2009). However, the RoC based on terrestrial vegetation did not differ
from that of the background (Fig. 12.3e) suggesting that the terrestrial vegetation
response to drought was gradual and that the most significant moisture-balance
change occurred as a result of a reduction in wet-season precipitation (Valencia
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Fig. 12.3 Rates of change from several lacustrine pollen records over the past 18 ka (see Table
12.1 for source and site description). Eastern Andean records plotted on an elevational gradient
(a–f); from high to low elevation: (a) Junin; (b) Caserococha; (c) Titicaca; (d) Chochos; (e)
Pacucha; (f) Siberia. Western Amazonian records plotted on a latitudinal gradient (g–m), from
North to South: (g) Pata; (h) Sauce; (i) Bella Vista; (j) Consuelo; (k) Chaplin; (l) Chalalán; (m)
Santa Rosa. Other records plotted for comparison: temperature reconstruction based on stable iso-
tope analysis, (n) from GISP (Alley 2004), (o) from EPICA Dome C (Monnin et al. 2001); (p)
number of warm-ENSO events (Moy et al. 2002); YD: Younger Dryas (Broecker 1998); 8.2k:
8.2-ka cooling events (Alley et al. 1997); ENSOa: period of modern-frequency warm-ENSO events
(Sandweiss et al. 1996); ENSOb: period of intensified warm-ENSO events (Sandweiss et al. 1996);
1491: onset of European colonization. RoC are based on detrended correspondence analyses per-
formed on percentage pollen data and Euclidean distance among ordination axes. Note that RoC
scales are relative to total variance within each dataset

2006). In the Lake Siberia record, trends of community change resemble those of
lowland records, which may be related to sharing the same Amazonian moisture
sources. Post-LGM changes in Siberia were minimal, with slightly increased RoC
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between 18 and 16 ka (Fig. 12.3f). This increase was mostly driven by a down-
slope migration of the puna-cloud forest limit, characterized by the colonization
of Polylepis-Acaena (Mourguiart and Ledru 2003). No evidence of drought-caused
increases of RoC was observed during the mid-Holocene in Siberia. However,
a close examination of charcoal peaks in Siberia (Mourguiart and Ledru 2003,
Fig. 12.1) showed a rough coincidence in timing with low lake-level stands in
Pacucha (Valencia 2006, Hillyer et al. 2009), suggesting that increased fires may
be related to reduced moisture availability in the region. Highest RoC between c. 7
and 5 ka coincided with increased fire frequency associated with the beginning of
human activities (Mourguiart and Ledru 2003) or possibly with intensified ENSO
activity as proposed by Haberle and Ledru (2001). Unfortunately, in the Siberia
record the top 30 cm of the sediment column were lost during coring, hence no
record was available for the past 5 ka.

Unlike Andean records which have highest RoC in the Late Pleistocene, records
from lowland western Amazonia showed high RoC concentrated in the Holocene
(Fig. 12.3 g–m). A few minutes North of the Equator, Lake Pata showed a large
Pleistocene RoC peak, not observed in any of the other lowland records (Fig. 12.3 g).
This prominent peak was centered around 18 ka and was probably associated with
post-LGM temperature increase (Bush et al. 2004a). Following this period of sub-
stantial forest change, the Pata record showed another increase in RoC around 6 ka
that coincided with increases of herbaceous understory elements suggesting a less
dense forest canopy consistent with a reduction in precipitation (Mayle and Power
2008). RoC changes in the Pata record were derived from large time intervals (i.e.
as much as 3000 years), hence its low sensitivity to short-lived events such the YD
and 8.2 ka events.

Lake Sauce (6◦S) provided a high-resolution Holocene record characterized
by relatively constant RoC throughout the early and mid-Holocene (Fig. 12.3 h).
These virtually constant RoC did not mean that the forest was unchanged, but
rather that the speed of these changes was roughly constant. Analyses of El Niño
Southern Oscillation (ENSO) activity suggested increased frequency after c. 5.5 ka
(Fig. 12.3 p, Sandweiss et al. 2001) and strengthening of the oscillation in the last
1500 years (Fig. 12.3p, Moy et al. 2002). However, the existing records accounted
for variability in the warm-phase, El Niño portions of the cycle. The multiproxy
record of Lake Sauce showed a strong correlation with the frequency and intensity
of both cold and warm ENSO phases in western Amazonia (Correa-Metrio 2007).
From 1.8 to 1.1 ka, the high RoC in Sauce (Fig. 12.3 h) coincided with a period
that apparently had c. 30 strong El Niño and La Niña events per century; the high-
est concentration in the last 6 ka (Correa-Metrio 2007). Enhanced ENSO activity
in the mid-Holocene was hypothesized to have induced the most rapid changes in
terrestrial vegetation in Sauce within the last 6 ka (Correa-Metrio 2007).

The RoC for Lake Bella Vista between 8.5 and 3 ka were plotted as a dis-
continuous line because we could not establish whether a marked reduction in
sedimentation was associated with a sedimentary hiatus (Fig. 12.3i). High RoC are
concentrated during the past 3 ka in Bella Vista and sustained until the present. Such
large community changes in the Bolivian lowlands were attributed to a reduction in
open savannas as forests expanded in response to a gradual increase in mean annual
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precipitation (Mayle et al. 2000, Burbridge et al. 2004). The trend of forest expan-
sion is evident in the Lake Chaplin data (Fig. 12.3 k), with the onset of high RoC at c.
3 ka and an intensification of community change around 1 ka. The greater sensitivity
of Lake Chaplin, compared with Bella Vista, to Late-Holocene forest expansion may
be explained by its proximity to the southern limit of Amazonian forest (i.e. 30 km as
opposed to 120 km for Lake Bella Vista) (Mayle et al. 2000, Burbridge et al. 2004).
In Lake Consuelo, RoC showed significant differences between the Pleistocene and
Holocene periods (Fig. 12.3j). Variability in Pleistocene RoC was much less than
that of the Holocene, despite an almost complete forest turnover between 20 and c.
12 ka (Bush et al. 2004b). Even with a 5.5◦C Pleistocene cooling relative to modern,
the deglacial warming resulted in incremental rather than sudden changes in forest
composition. During the Holocene, a significant change in sedimentation rates was
identified based on radiocarbon dating of two parallel cores from Lake Consuelo
and was attributed to a period of reduced precipitation in the region (Urrego 2006).
The effect of this episode on both lake level and forest composition was greater
than that caused by any ecological change associated with the LGM or deglaciation.
Within the last 3.5 ka, RoC were more variable, with the largest spike around 2.2 ka
(Fig. 12.3j). Overall, the results from the RoC analysis of Lake Consuelo suggested
that moisture availability, possibly mediated through cloud cover, played the most
significant role in rapid ecological change in this system (Bush et al. 2004b).

Also in the western Amazonian lowlands, Lakes Chalalán and Santa Rosa lie c.
450 km West of Chaplin and Bella Vista. RoC in Chalalán and Santa Rosa showed
oscillations throughout the Holocene, with a generally increasing trend toward the
present (Fig. 12.3 l–m). Lake Santa Rosa showed a peak in RoC during the early
stages of the lake, which may be associated with rapid changes in the forest edge
due to the stabilization of a new permanent water body (Fig. 12.3m). This tendency
was not observed in Lake Chalalán and was attributable to bathymetric differences
between these lakes. Today, Santa Rosa is much shallower than Chalalán and has a
flat bottom with gentle side slopes. This bathymetric morphology makes its record
more sensitive to changes in the forest-edge vegetation. The RoC in Lake Chalalán
were relatively small between 8 and 3 ka (Fig. 12.3 l), despite pollen evidence of
drier or more-seasonal conditions (Urrego 2006). This evidence included increased
abundance of dry forest elements but not a complete replacement of the mesic vege-
tation. These data suggested that the reduction in precipitation may have been more
marked in the wet-season than in the dry season (Urrego 2006). Both the Chalalán
and Santa Rosa records suggested that the regional mid-Holocene dry event docu-
mented elsewhere (Mayle et al. 2000, Bush et al. 2005) had only a modest influence
on these forests. Late-Holocene RoC showed a few shifts in community composi-
tion associated with increased precipitation and possibly human disturbance in the
last millennium (Urrego 2006).

12.3.2 Drivers of Change

Post-LGM vegetation responses to climate changes in tropical South America
remain controversial on issues such as deglacial timing (Seltzer et al. 2002,



292 D.H. Urrego et al.

Thompson 2005), the effect of warming and moisture fluctuations (Maslin and
Burns 2000, Harrison et al. 2003, de Toledo and Bush 2007, Mayle et al. 2007),
and the effect of ENSO anomalies on the eastern flank of the Andes (Vuille et al.
2003). Whether rapid cooling events such as the Younger Dryas and the 8.2 ka
event are detectable in the southern Neotropics remains to be resolved (Thompson
et al. 1998, Alley et al. 2003, Paduano et al. 2003). Fire is another important pro-
cess driving ecological change in almost all records from the Andes and western
Amazonia at millennial timescales. In this section, we discuss these climatic and
physical mechanisms focusing on their role in shaping terrestrial plant communities.

12.3.2.1 Temperature

After the LGM, the most important temperature-driven global oscillation associated
with the glacial period was probably the onset of deglaciation. The LGM global
chronozone is defined as being between 24 and 18 ka (Mix et al. 2001). How-
ever, in the Andes and western Amazonia, deglaciation probably began between
22 and 19 ka (Rodbell 1993, Mark et al. 2002, Seltzer et al. 2002, Bush et al. 2004b,
Smith et al. 2005). While deglacial warming started some 5000 years earlier in the
Neotropics than at Northern high latitudes, the process continued until c. 11 ka
(Blunier and Brook 2001, Grootes et al. 2001). From the available paleoecological
data, it seems probable that although there was an initial warming as early as 22 ka,
this did not become a sustained trend until ca. 18 ka (Bush et al. 2004b). Our RoC
analysis begins at 18 ka and a strong response to warming is evident in Lakes Pata
(Fig. 12.3 g) and Caserococha (Fig. 12.3 c). At other sites the deglacial signature is
more gradual and lacks defined peaks of change.

After the deglaciation, two important post-glacial global temperature reversals
were the YD and the 8.2 ka event. The YD was the most significant rapid cool-
ing period that occurred during the last deglaciation in the North Atlantic region,
and was clearly recorded in the isotopic temperature reconstruction from GISP
(Fig. 12.3n, Alley 2004). The RoC calculated from GISP showed rapid tempera-
ture changes before and after the YD (Fig. 12.3 n) indicating the abrupt nature of
this episode. In tropical South America, the signal of the YD differed between the
northern and central Andes. In the northern Andes of Colombia, this temperature
reversal was ubiquitously recorded as a 4 to 6◦C cooling (van der Hammen and
Hooghiemstra 1995), while in the central Andes and western Amazonia, the impact
of the YD remains unclear. In our analysis, high RoC around the YD were observed
in Lake Junin, Caserococha and Chochos (Figs. 12.3a,b,d), although rapid cooling
has not been suggested as the cause for these changes (Bush et al. 2005). A some-
what uncertain chronology around the YD in the Lake Junin record prevented us
from establishing a definitive relationship at this site. At Caserococha and Chochos
relatively robust chronologies (Fig. 12.2) and 100- and 200-year resolution, respec-
tively, make these sites appropriate for an investigation of the YD. In Chochos, the
RoC signal lagged by c. 1000 year the onset of the YD, while in Caserococha rapid
RoC preceded the event. In the three lowland records presented here that span the
YD period, no change in RoC was observed that coincided with the event. The
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records from Lakes Pata, Chaplin and Consuelo showed relatively low changes dur-
ing the temperature reversal, indicating that the YD either had no influence on the
vegetation of western Amazonia or that it was too short to be recorded. Alterna-
tively, this pattern could be due to poor dating or low sampling resolution. Overall,
we were not able to identify changes in Andean or Amazonian records that were
directly attributable to the YD event.

The 8.2 ka event was a short-lived cooling event triggered by freshwater inputs
to the North Atlantic (Ellison et al. 2006), similar to the YD in its interhemispheric
signature although much shorter in duration (c. 200 years) (Alley et al. 1997). No
linkage between this rapid episode and terrestrial ecological changes in tropical
South America has yet been documented. The marine sedimentary record from the
Cariaco Basin reveals the presence of the 8.2 ka event when sedimentary changes
suggested a period of enhanced winds or decreased precipitation (Hughen et al.
1996, Alley et al. 2003). Due to the short duration of this temperature reversal, high-
resolution, well-dated records are necessary to discern its influence. Furthermore,
sedimentation rates need to be high enough to capture such short events. Despite
these limitations, we feel it is important to discuss potential linkages between com-
munity changes in tropical South America and the 8.2 ka event given the growing
evidence of its signature in other tropical systems (Lamb et al. 1995, Mulitza and
Rühlemann 2000, Thompson et al. 2002, Lachniet et al. 2004). Within our study
region, records with sampling resolution and sedimentation rates high enough to
reveal the effects of this event are available from Lakes Titicaca, Chochos and
Pacucha.

RoC between 9 and 8 ka in Titicaca were low and preceded a period of increased
variability (Fig. 12.3c). In Lake Chochos, the 8.2 ka event fell within a phase of
enhanced variability of RoC, although it did not seem to have produced a particular
oscillation (Fig. 12.3d). On the other hand, while RoC from terrestrial vegetation
in Pacucha did not reveal significant changes around the event, other proxies, e.g.
diatoms and CaCO3 concentrations, reflected an increase in lake level consistent
with increased precipitation (Hillyer et al. 2009).

12.3.2.2 Precipitation

The most prominent reduced-precipitation event that has been documented in post-
glacial tropical South America is the Mid-Holocene Dry Episode (MHDE) (Mayle
and Power 2008). This event has been recorded in several sites both in the north-
ern Andes (Berrio et al. 2002), central Andes (Abbott et al. 1997, Seltzer et al.
1998, Baker et al. 2001, Rowe et al. 2002, Paduano et al. 2003, Theissen et al.
in press) and western Amazonia (Mayle et al. 2000, De Freitas et al. 2001, Bush
2005), suggesting that it was regionally widespread. However, the timing and dura-
tion of the MHDE were not synchronous among records. In the Andean records used
here, the influence of mid-Holocene dry conditions were clear in RoC from Lakes
Junin, Caserococha, Titicaca, Chochos and Consuelo (Fig. 12.3). The weakness,
or lack of, the MHDE signal in Lake Siberia, could be explained by the buffer-
ing effect of a semi-permanent cloud cover. Lake Consuelo, on the other hand, is
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presently located right at the lower cloud-base limit (i.e. 1400 m elevation), which
may have been displaced upslope as moisture availability was reduced during the
mid-Holocene. In Lakes Pacucha, Chalalán, and Santa Rosa the influence of MHDE
has been correlated with decreased wet-season precipitation and subtle forest com-
positional changes (Urrego 2006, Valencia 2006), but not with a complete terrestrial
vegetation turnover. This observation could explain the absence of a conspicuous
increase of RoC in the records corresponding to the MHDE (Fig. 12.3e,l,m).

Despite the evidence of a regional mid-Holocene dry phase in tropical South
America, the driving forces behind this event have yet to be clarified. Hypothesized
driving mechanisms include precessional fluctuations in solar forcing of the South
American low-pressure systems (Lamb et al. 1995, Seltzer et al. 2000, Garreaud
et al. 2003, Harrison et al. 2003, Theissen et al. 2008) and changes in tropical Pacific
circulation and millennial-scale fluctuations of ENSO frequency (Sandweiss et al.
1996, Andrus et al. 2002, Riedinger et al. 2002). The RoC analysis could shed light
on the effects of this regional drought on the vegetation but does not reveal the
mechanism underlying the MHDE in western Amazonia or the eastern Andes. In
general, the RoC data identified the MHDE as being a time of substantial and rapid
community change in many of the systems studied.

Regarding ENSO, the analysis of community RoC in Lake Sauce supported
the correlation with enhanced frequency of both warm and cold ENSO hypothe-
sized by Correa-Metrio (2007). The onset of increased fire frequency in Siberia
could also be correlated with intensified ENSO warm-phases since c. 5 ka (Haberle
et al. 2001).

12.3.2.3 Fire

Fire has been an important natural mechanism in Andean and western Amazonian
sites well before humans occupied the landscape. For instance at Lake Titicaca, fire
has been a modifying component of the landscape for 370,000 years (Hanselman
2007). In Lakes Chochos and Siberia, Pleistocene and Holocene vegetation changes
were attributed to increased fire frequency (Bush et al. 2005). Similarly, records
from Chalalán and Santa Rosa in western Amazonia, showed rapid changes in RoC
that correlate with increased fire intensity (Urrego 2006). In general, fluctuations
in fire regimes at these sites could be responsible for the large amount of local
variability detected in the RoC analysis, indicating the major role that fire has played
in shaping tropical South American vegetation.

12.3.2.4 Human Disturbance

Records of human occupation in western Amazonia (Piperno 1990, Bush et al.
2007, de Toledo and Bush 2007) and the eastern Andes (Chepstow-Lusty et al.
2003) date back at least 7 ka and 12 ka, respectively, but only intensify during the
Late Holocene. The overall RoC trend observed in both regions was of enhanced
variability during last few millennia (Fig. 12.3), consistent with human-derived



12 Post-LGM Rates of Ecological Change in Western Amazonia and Eastern Andes 295

modifications of the landscape. The lowland sites of Pata and Consuelo have no
known history of human occupation (Bush et al. 2004a), and the Chaplin and Bella
Vista records exhibit low late-Holocene charcoal concentrations during a time of
forest expansion (Mayle et al. 2000, Burbridge et al. 2004).

Human intervention included deforestation, introduction of weeds, slash and
burn, and agricultural practices, indicating that these are not new problems fac-
ing the Andes and Amazonia (Willis et al. 2004). Human influence was suggested
for Lake Chochos as a deforestation signal as early as 6 ka (Bush et al. 2005)
and at Lake Titicaca as an increase in weedy vegetation documented at c. 3.1 ka
(Paduano et al. 2003). In Lake Siberia, the onset of human occupation was inferred
at c. 7 ka when fire frequency increased (Mourguiart and Ledru 2003) and RoC also
rose (Fig. 12.3f). In Lake Pacucha, high RoC at c. 5 ka resulted from an increase
in Quinoa and Ambrosia (Valencia 2006) both of which are reported as important
agroforestry elements of pre-Incan cultures (Chepstow-Lusty et al. 2003).

Our results support theories of human population demise following European
colonization of the new world (Roosevelt et al. 1996, Denevan 2003, Hecken-
berger et al. 2003). RoC increase around 400–500 year BP, which we interpret
to indicate the recovery of plant communities following abandonment at Cho-
chos, Sauce, Chalalán and Santa Rosa (Fig. 12.3). Similarly, we expect a second
peak during the last two centuries as human populations and European influence
expanded exponentially in the region. However, the temporal resolution of most of
the records is not high enough to reveal this change. The best evidence for this post-
conquest population recovery and landscape change is found in the RoC from Sauce
(Fig. 12.3 h), where the paleoecological record has decadal resolution during the
past 1000 years.

12.4 Overview

Paleoecological records from the eastern Andes and lowland western Amazonia
show great variability both during the Pleistocene and the Holocene. Despite the
scattered network of records, RoC peaks appear to be frequent during both the Pleis-
tocene and Holocene in the Andes while being more concentrated in the Holocene
period at lowland sites. In light of these differences, we hypothesize that the lack
habitat availability makes montane systems like the Andes more sensitive to cli-
mate change than the Amazon lowlands. In the lowlands, species have been able
to migrate in any direction as local conditions became unfavorable, e.g. species no
longer within their bioclimatic envelope. Such migrations could have led popula-
tions to migrate in terms of macrotopography, i.e. elevationally within the Andes,
or in microtopography, i.e. from terra firme to gallery forests. In the Andes, an ups-
lope migration of species due to warming results in less occupiable space because
mountains are effectively cone shaped. In areas where large high-elevation plateaus
exist, they lie above modern tree line and could only be occupied by trees if warm-
ing is accompanied by increased moisture. Consequently, as migration proceeds
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habitat suitable for forest would inexorably decrease, increasing the vulnerability
of populationss and species to extinction. If true, our hypothesis would have large
implications for the conservation of tropical South American ecosystems in the light
of future climate change.

Fluctuations in terrestrial plant assemblages are the result of multiple driv-
ing mechanisms, including temperature and precipitation changes, fire frequency
and ENSO. The marked response to short-sharp cooling events, e.g. the YD and
8.2 ka events, observed at high latitude was not evident in our study area. How-
ever, we recognize that the number of suitable records to detect such fine-scale
variability is still small. We predict that further high-resolution examination of trop-
ical South American records with high sedimentation rates may reveal pulses of
change caused by events like the YD. Evidence of the MHDE is regionally con-
sistent but its impact on ecosystems differed at the local scale according to the
extent to which sites were buffered from moisture deficit. While in Lake Con-
suelo, mid-Holocene dry events were associated with the lifting of the cloud base
and vegetation changes indicative of lowered lake levels, in Lakes Pacucha, Cha-
lalán, and Santa Rosa, the changes were not as pronounced. In the two latter
sites, reduction of wet-season precipitation has been hypothesized to produce the
observed changes. Impacts of MHDE are evident virtually in all records from the
eastern Andes and western Amazonia, although the driving mechanisms behind its
occurrence remain unclear. The only records with a sedimentation rate and depo-
sitional regime suitable to study ENSO variability in the region are those of Lake
Sauce, Peru (Correa-Metrio 2007, and Pallcacocha) Ecuador (Rodbell et al. 1999,
Moy et al. 2002). Those records depict a consistent image of ENSO variability
with Lake Sauce providing the first detailed reconstruction of La Niña-dominated
phases.

Overall, the RoC analysis showed that the timing of major changes in forest com-
position was essentially local rather than regional, making widespread patterns the
exception rather than the norm. In the eastern Andes and western Amazonia, fire
may be a major driver at the local scale, as it was recorded and correlated with
changes in all sites with the exception of those from hyper-humid locales (i.e. Pata).
Many records show accelerated RoC during the past 3000 years attributable to inten-
sification of human activities. A clear outcome of this analysis is that ecological
rates of change from both eastern Andean and the western Amazonian ecosystems
have kept pace with the rates of climate changes since the LGM. Such coupling has
been possible because rates of climatic change did not exceed the species response
capability. Anticipated rates of warming for the next century (IPCC 2002) are
likely to challenge the ability of species to keep pace with the geographic move-
ment of their climatic envelope (Malcolm et al. 2006). Landscapes modified by
human activities will add barriers impeding needed migration and may trigger an
extinction event (Brooks et al. 2002). Our results legitimize concerns regarding the
resilience of species to accommodate future change and emphasize the urgency for
effective and prompt conservation measures, and the reduction of greenhouse gas
emissions.
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