Thin Films

Goals

- Make electrical or optical devices that are – small
 - cheap (process and materials)
- Make materials (textiles, engine blocks) more
 - durable (protective coatings)
 - stable (resist oxidation)

One Solution ...

- Make devices that consist of thin layers of various materials.
- Deposit thin layers of coatings to get the desired properties.
- The thickness of the layers can range from 10 nanometers to several micrometers.

Examples of Devices

- Transistors, diodes, integrated circuits
- Photovoltaic cells
- Electrochromic devices
- Sensors
- LEDs

Thin Film Transistors

- Many layers
 - Doping
 - Lithography
 - Etching
- Metal contacts
 - ITO for transparent contacts

Figure 1. Schematic for the fabrication of transparent transistor using LbL self-assembled nanocrystal multilayers.

Nanotechnology 18 (2007) 195204 (5pp)

Light Emitting Diodes

- The battery supplies the current (a flow of electrons).
- When electrons move they leave behind positively charged vacancies (holes).
- Electrons and holes attract each other and recombine.
- Their energy is released as light.

Photovoltaic Cells

- Layered thin film device
- Electricity from light

Coatings

- Anti-reflection coatings on glasses
- Anti-oxidation layers on metals
- Ceramics to prevent overheating
- Hydrophobic coatings

Thin Film Deposition

- Need a clean substrate the base material to deposit the film on.
- Need a source for the film material.
- Somehow bring the source material in contact with the substrate and have it stick.
- If necessary pattern and etch the film.

Deposition Methods

- Solution processing
 Spin coating
- Vapor deposition
 - Chemical
 - Physical
 - Vacuum Evaporation
- Molecular Beam Epitaxy

Solution Processing

- Used for conjugated polymers and soluble materials.
- Dissolve thin film material in a solvent (mostly carcinogenic stuff)
- Place a drop on the substrate.
- Use a spin coater or a doctor blade to spread the film.

Chemical Vapor Deposition

- Use a chemical reaction between several vapor source materials (precursors) on the substrate to synthesize and deposit the thin film.
- Mostly used in the semiconductor industry.

 $SiH_4 \rightarrow Si + 2H_2$

Physical Vapor Deposition

- Use physical means (heating, ablation, plasma) to generate a vapor of the thin film material.
- The atoms/molecules of the material then travel to or are guided to the substrate and get deposited.
- Generates high heat at the source and substrate and generally requires a vacuum.
- Used mostly for metallic films.

Molecular Beam Epitaxy

- Creates very high purity, single crystal films atomic layer by atomic layer.
- Each atomic source is heated separately and allowed to condense on the substrate.
- It is a slow process that requires very high vacuum.
- Used to make quantum structures such as quantum wells.

Vacuum Systems

- Vacuum pump
 - Mechanical
 - Diffusion
 - Turbo
- Vacuum chamber
 - Glass or pyrex
 - Steel
- Instrumentation
 - Vacuum gauges
 - Thermocouples
 - Feedthroughs

Testing Thin Films

- Physical measurements
 - Thickness Profilometer
 - Microscopy AFM, TEM, SEM, Optical
- Optical measurements
 - Luminescence, absorption
- Composition measurements
 - Defects XRD, LEED, FTIR, Raman
- Electrical measurements
 - Conductivity 4 point measurements
- Thermal measurements
 - Thermal conductivity
- Mechanical measurements
 - Stress/strain