Vacuum Evaporation

Introduction

- The objective is to controllably transfer atoms from a heated source (which can be a liquid or a solid) to a substrate located a distance away to grow a film.
- The source is heated directly or indirectly until the point is reached where it efficiently sublimes or evaporates.
- When analyzing this method, we need to start from evaporation rates and vapor pressure.
- Evaporation is normally done in the ballistic regime (*Kn* > 1).
- Other than pressure and temperature, the placement of the heater, source and substrate are important factors.

Process Summary

- Place a suitable material (the source) inside the vacuum chamber with a heater.
- Seal and evacuate the chamber.
- Heat the source. When the temperature reaches the evaporation temperature, atoms or molecules start to leave the surface of the source and travel in a more or less straight path until they reach another surface (substrate, chamber wall, instrumentation).
- Since these surfaces are at much lower temperatures, the molecules will transfer their energy to the substrate, lower their temperature and condense.
- Since the vapor pressure at the new temperature is much higher, they will not re-evaporate and adhere to the substrate.
- The deposition thickness is a function of the evaporation rate, the geometry of the source and the substrate and the time of evaporation.

Vapor Pressure

- Vapor pressure is the pressure at which the vapor phase is in equilibrium with the solid or the liquid phase at a given temperature.
- Below this pressure, surface evaporation is faster than condensation, above it it is slower.
- Theoretically, the vapor pressure can be found by the **Clausius-Clapyeron** equation.

$$\frac{dP}{dT} = \frac{\Delta H(T)}{T\Delta V}$$
 where ΔH is the change in enthalpy, and ΔV is the change in $T\Delta V$ in volume between the solid (or liquid) and vapor phases

• Over a small temperature range, the equation can be simplified as:

$$P = P_0 \exp\left(-\frac{\Delta H_e}{RT}\right)$$
 where ΔH_e is the molar heat of evaporation

Vapor Pressure of Elements

- In reality, empirical formulas and experimental data are more useful to find the vapor pressure of an element.
- For example, the vapor pressure of liquid Al is given by:

$$\log P(torr) = -15993/T + 12.409 - 0.999 \log T - 3.52 \times 10^{-6} T$$

Main Terms Smaller Terms

Temperature in Degrees Centigrade

Vapor Pressure in Iorr (mm Hg)

Evaporation Rate

• The basic equation for evaporation flux is given by:

$$\Phi_e = \frac{\alpha_e N_A (P_v - P_h)}{\sqrt{2\pi MRT}}$$

where Φ_e is the evaporation flux, α_e is the coefficient of evaporation (0 < α_e < 1), P_v is the vapor pressure and P_h is the ambient pressure.

• Maximum flux is obtained when $\alpha_e = 1$ and $P_h = 0$

$$\Phi_e = 3.513 \times 10^{22} \frac{P_v}{\sqrt{MT}} \frac{\text{molecules}}{\text{cm}^2 \text{s}}$$

• This can also be put in mass units by multiplying flux with the atomic mass:

$$\Gamma_e = 5.84 \times 10^{-2} \sqrt{\frac{M}{T}} P_v \frac{\text{gr}}{\text{cm}^2 \text{s}}$$

Aluminum Example

- For AI, *M* = 27 gr
- From the vapor pressure diagram, to get $P_v = 10^{-4}$ Torr, we need to heat AI to 980 °C.
- At this temperature, the mass evaporation rate is:

$$\Gamma_e = 5.84 \times 10^{-2} \sqrt{\frac{27}{980}} 10^{-4} \frac{\text{gr}}{\text{cm}^2 \text{s}} = 9.694 \times 10^{-7} \frac{\text{gr}}{\text{cm}^2 \text{s}}$$

 If the vapor pressure is chosen to be 10⁻² Torr, then the temperature has to be increased to 1220 °C and the evaporation rate becomes:

$$\Gamma_e = 5.84 \times 10^{-2} \sqrt{\frac{27}{1220}} 10^{-2} \frac{\text{gr}}{\text{cm}^2 \text{s}} = 8.688 \times 10^{-5} \frac{\text{gr}}{\text{cm}^2 \text{s}}$$

Deposition Rate

- Of course the ultimate quantity we are looking for is a deposition rate.
- This is not only related to the evaporation rate but also the angle and distance between the source and substrate.
- Our basic assumption remains that we are in the ballistic regime and the evaporated atoms travel in a straight line from the source to the substrate.
- We start by looking at the mass lost from the source.

$$M_e = \int_{0}^{t} \int_{A_e} \Gamma_e dA_e dt$$
 where A_e is the surface area of the source

- The expansion of that mass in the chamber depends on whether the source is a point or a surface source.
- A portion of that mass is incident on the target. The orientation of the target will determine the actual mass that is deposited.

Point and Surface Sources

90

1.0

0.8

0.6

0.4

0.2 0.0

0.2

0.4

0.6 0.8

1l0

n=6

Film Thickness Variation

Maximum film thickness occurs at *I* = 0. If we express the thickness relative to the maximum thickness;

$$\frac{d}{d_0} = \frac{1}{\left(1 + (l/h)^2\right)^{3/2}} \qquad \qquad \frac{d}{d_0} = \frac{1}{\left(1 + (l/h)^2\right)^2}$$

An Arrangement for Uniform Films

 If both the source and the substrate are located on the surface of a sphere, the angular dependence on θ or φ is eliminated.

Film Purity

There are several sources of impurity:

- Contamination of source materials

 Use high purity (99.99999%) materials
- Contamination from the heater
 Use materials with low diffusion
- Residual gas in chamber
 - Better vacuum
 - Higher deposition rate

Compounds

- Evaporation of multi-element materials like compounds present some problems.
- Compounds can decompose or dissociate during evaporation.
- Different components of the material can have different vapor pressure/temperature requirements leading to different vapor concentrations and different stochiometry.

Reaction Type	Chemical Reaction	Examples	Comments
No dissociation	MX(I or s)→MX(g)	SiO, CaF ₂ , MgF ₂	Stoch. maintained
Decomposition	$MX(s) \rightarrow M(s \text{ or } I) + \frac{1}{2} X_2(g)$	III-V semiconductors	Separate sources are required
Dissociation			
Chalcogenides	$MX(s) \rightarrow M(g) + \frac{1}{2} X_2(g)$	CdS, CdSe, CdTe	Separate sources are required
Oxides	$MO_2(s) \rightarrow MO(g) + \frac{1}{2}O_2(g)$	SiO ₂ , TiO ₂	Deposit in O ₂ partial pressure

Alloys

- An alloy is a multi-component system where the constitutive elements are completely miscible in each other and can have varying stochiometry.
- The problem arises due to the different vaporization rates of the components.
- Even if initial concentration ratios are adjusted to take this into account, as evaporation proceeds, the flux of each component will vary leading to a graded film composition along the film thickness.

Vacuum Evaporation Sources

- Physical evaporation
 - A "source" container is heated.
 - The material to be evaporated is placed in or near the source.
 - The radiative and conductive heating evaporates the source.
- Electron beam evaporation
 - A filament is heated and emits electrons.
 - The electrons heat the evaporant and vaporize it.

The Basic V-Groove Source

- Place the evaporant at the tip of the V.
- Uses radiative and conductive heating (through wetting) to evaporate material.
- Filament is good for one use.
- Not for depositing films thicker than 1500 A.
- Point source (fairly even coating over a spherical surface)

Other Arrangements

- Multiple Loop Source
- Better for heavier coatings
- As many as 15 loops, wound helically
- Need trial and error to find best position for even coating.

- Wire basket source
- More flexible
- Better able to handle evaporants that melt

- Dimpled boat source
- Made of Mo, Ta, Tu
- Can hold bigger charges
- Can deposit thicker layers
- Evaporation occurs only in the upward direction
- Higher power requirements

Closed Sources

- Evaporant is placed in dimpled volumes inside the source.
- The source is sealed creating a simple furnace.
- As current is passed through the source, evaporant vapors are emitted through the holes in the source.

• Creates speck-free vapor.

Electron Beam Sources

- Resistive heating first heats a source and then uses radiant or convection heating to heat the evaporant. This can be inefficient.
- By applying a high voltage to a filament, we can create an electron beam.
- When the beam contacts the evaporant, it will heat it directly.
- Since the evaporant is water cooled, it will not wet the source and remains pure.
- Since there are no boats, wires, etc., higher temperatures can be reached.
- Electrical arcing and discharges may occur.

Thickness Measurements

- Gravimetric Method
 - Measure substrate weight before and after coating
 - Calculate thickness from known substrate dimensions
 - Not real-time but surprisingly accurate
- Stylus Method (Profilometer)
 - A stylus is drawn across a step in the film
 - Scratching can occur
 - Needs calibration
 - Can do repeated measurements
 - Not real-time

Process Control

- Resistance monitoring
 - For metallic (conductive) films
 - Resistance is the ratio of voltage to current.
 - It is a function of the dimensions of the film (thickness and length) as well as the material it is made of (resistivity).
 - Should be calibrated against the gravimetric method.

Quartz Crystal Monitors

- Install a quartz oscillator in the vacuum chamber.
- Quartz will have a specific oscillation frequency.
- Expose one side of the quartz wafer to the vapor.
- As the vapor coats the wafer, the oscillation frequency changes.
- Many assumptions are being made including proper calibration, quartz quality and proper usage.
- With a 6 MHz oscillator, it is possible to measure nanogram changes which in turn means about 0.1 A.

Substrate Cleaning

- A clean substrate is essential to achieve good film adhesion.
- The "Tape Test" is the qualitative measure for good adhesion.
- Sample cleaning for ITO:
 - 30 min ultrasonic bath in acetone
 - 30 min ultrasonic bath in methanol
 - 15 min ultrasonic bath in isopropanol
 - 90 min UV/Ozone cleaning

Vacuum Evaporator Diagrams

Operating situation 1: Making low vacuum in chamber

Roughing valve open: MP makes low vacuum in chamber

Operating situation 2: Standby situation

Backing valve open: MP removes air molecules from DP

Operating situation 3: Condition for evaporation

Backing valve and main valve both open: MP removes air molecules from DP while DP removes air from main chamber

Vacuum Chamber

- 304 stainless steel base plate ~1 in. thick
- Glass bell jar: usually Pyrex
- Viton rubber boot on bottom of bell jar (greased) SAFETY:

- 1. Do not handle bell jar with gloves on
- 2. Line inside of bell jar with aluminum foil to keep surface clean/no abrasives
- 3. Never touch components of chamber or interior of bell jar with bare hands

Final Words

- Vacuum evaporation is most suitable for deposition of metallic thin films.
- Compounds and alloys don't deposit well because they tend to dissociate at the temperatures required.
- While patterning using masks are routinely done, step coverage is not very good because the vapor flows ballistically (shadowing).