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Chapter 1: Introduction

This is sample text from an actual Thesis:

As images pass through the earth’s atmosphere they become distorted. In some

cases so much so that the image has no similarities to it’s ”actual” form. The wave

front relinquishes it’s form for a variety of reasons. Some of which include humidity, air

temperature and general atmospheric turbulence [7]. By definition adaptive optics

is the scientific and engineering discipline which deals with the control of light in

some form of an adaptive looping process [7]. Even though no single person may be

accredited as the founder of adaptive optics there have been vast advancements made

in the past 50 years. The basic process behind adaptive optics is to obtain a sample of

the gradient of the incoming wavefront which may be accomplished through the use

of a Shack-Hartmann wave front sensor when a point source is available. Perhaps the

most common method for correcting atmospheric aberrations is by phase conjugation.

This method is the focal point in adaptive optics. Next, the obtained data is used to

correct the wave front.

When any wave front passes through some aberrator it is modified. Once the

distorted wave front bounces off of a conventional uncorrected mirror it again passes

through the aberrator and the distortion in the wave front is now doubled as seen

in Figure 1 located in the Appendix. The magnititudes of the bumps in the final

distorted wave front directly determine the mirror correction necessary in order to

retrieve the original wavefront. Multiplication of every distortion by - 1/2 determines

the amount of correction needed over each particular mirror segment at the position

in which the wavefront reflects off of the mirror segment. This is a very tricky process

since most aberrations are constantly changing and therefore the correction for them
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must be a continuous process and must repeatedly occur in order to achieve accurate

results. Correction is accomplished by quickly positioning the deformable mirror to

correct the wavefront. The detection, estimation and correction process should not

take longer than one one-hunderdth of a second [7]. Since the goal is to obtain real

time data. The final images may be further enhanced by post-processing methods,

but that topic will not be discussed in this paper.

[remainder of chapter deleted]
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Chapter 2: Name of chapter 2

In the mid 1960’s, the Fast Fourier Transform, or FFT, was born. By 1977,

various methods of FFT’s were implemented in a wide variety of applications. It is still

considered to be one of greatest advancements in Numerical Analysis. FFT algorithms

were developed as a ”quick” method for computing the Discrete Fourier Transform.

The Discrete Fourier Transform, or DFT, is the result obtained by discretizing the

Fourier Series. It is important to remember that the function in consideration must

have periodicity, a finite number of maxima and minima during any period, a finite

number of discontinuities if there are any at all, and it must be absolutely integrable

in any period in order to have a fourier series representation [5]. Any algorithm whose

computational efficiency is on the order of N log2N is generally considered an FFT

method. This implies that solutions to the inverse Discrete Fourier Transforms are

also considered FFTs.

There are many types of FFT algorithms, but they fall into one of two general cat-

egories. The decimation in time approach and the decimation in frequency approach.

The decimation in time approach breaks apart the time dependent input vector x

in order to approximate the solution. The decimation in frequency approach breaks

apart the frequency dependent vector y in its computation.

In order to use the so-called Radix-2 FFT, the matrix in question must be n ×

n where n = 2i ∃ i ≥ 1. The general Radix algorithm requires the n × n matrix to

be highly composite (i.e. having many small factors). There are also algorithms for

computing FFTs of non-square matrices. However, the Radix-2 algorithms allow for

faster execution than the more general ones. It is possible to modify a matrix whose

dimension is not a power of two by padding it with zeros to obtain a square n × n
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matrix where n is some power of two.

Let the vector y =


y0
y1
...

yn−1

 be the Discrete Fourier Transform of x =


x0
x1
...

xn−1

 .

Each yk =
∑n−1

j=0 [cos(2πkj/n)−isin(2πkj/n)]xj =
∑n−1

j=0 e
−2πkji/nxj for k = 0, 1, ...,n-

1. There are several variations on computing the Radix-2 FFT. One is the omition

of the 1
n

term for each yk. Another is to omit the negative sign from the power of

the exponential function. The DFT of y may also be seen as the product of a matrix

and a vector where y = Fnx and Fn is an n × n matrix with rows indexed by k and

columns indexed by j. Each entry in Fn is denoted by f(k,j) and is equal to e−2πkji/n.

In order to reduce the number of flops the convention of dropping the 1/n term will

be applied in the formulation of the DFT.

Sample Matlab code to set up the Discrete Fourier Transform matrix given by [8]:

for k = 0:n-1

m = e−2π/n

F(k,0) = 1

for j = 1:n-1

F(k,j) = mF(k,j-1)

end

end

The efficiency of an algorithms is commonly measured in flops which are floating

point operations. There are two flops for complex addition and six flops for complex

multiplication. The total number of flops for the above code is given by O(6n2) flops.

Assuming the vector x still has length n. Define

ωm = diag(1, e−2π/n, (e−2π/n)2, ..., (e−2π/n)(m− 1)) (2.1)
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where m is initially n
2

and diag refers to an m × m matrix with the entries listed going

down the diagonal. Define EOPermn to be an n × n matrix using sequential even

and odd format respectively and beginning with 0 as the first element in the even list.

One of the interesting properties of EOPermn is that the transpose of this matrix is

its inverse such that EOPermnEOPerm
T
n = In.

Applying EOPermn to Fn on the right will yield a matrix of the form

FnEOPermn =

(
Fn

2
ωn

2
Fn

2

Fn
2
−ωn

2
Fn

2

)
=

(
In

2
ωn

2

In
2
−ωn

2

)(
Fn

2
0

Fn
2

0

)
Since EOPerm−1

n = EOPermT
n then multiplying both sides by EOPermn)T on the

right yields:

FnEOPermnEOPerm
T
n =

(
In

2
ωn

2

In
2
−ωn

2

)(
Fn

2
0

Fn
2

0

)
EOPermT

n

FnIn = Fn =

(
In

2
ωn

2

In
2
−ωn

2

)(
Fn

2
0

Fn
2

0

)
(EOPermn)T

Multiplying both sides by the vector x on the right gives:

Fnx =

(
In

2
ωn

2

In
2
−ωn

2

)(
Fn

2
0

Fn
2

0

)
x(EOPermn)T

Fnx =

(
In

2
ωn

2

In
2
−ωn

2

)(
Fn

2
0

Fn
2

0

)(
x(0 : 2 : n− 2)
x(1 : 2 : n− 1)

)

y = Fnx =

(
In

2
ωn

2

In
2
−ωn

2

)(
Fn

2
x(0 : 2 : n− 2)

Fn
2
x(1 : 2 : n− 1)

)
Repeating these steps for C = n

2
FCx(0 : 2 : n − 2) and FCx(1 : 2 : n − 1) follows

similarly. This process can be repeated until c = 1 when n is some power of two.
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Since the Fast Fourier Transform is a ”quick” solution to the DFT, then the

number of flops used to compute y should be much less than an n × n matrix * n

vector, which would be 8n2 flops for complex numbers.

The FFT method utilizes the special structure of the DFT matrix. The basic

concept of an FFT involves systematically working backwards. Assuming our orig-

inal modified matrix is n = 2t there are t + 1 computation levels and our current

computational level is s which is initially s = 0 working backwards. The initial step

realizes that F1xj = xj and F1xk = xk since F1 = 1. Given two DFT matrices that

are to be combined are a and b each with length n
2

then

a = F c
2
x(k :

n

2s−1
: n− 1) (2.2)

b = F c
2
x(k +

n

2s−1
:

n

2s−1
: n− 1) (2.3)

Using the original vector x, start at the kth position and include every n
2s−1 entry until

reaching the n-1 entry when forming the vector a and likewise for b. Also the ω c
2

matrix defined earlier is needed, where n = 2s. Define ζ = ω c
2

b then we may obtain

Fcx(k :
n

2s
: n− 1) =

(
In

2
ωn

2

In
2
−ωn

2

)(
a
b

)
=

(
a+ ζ
a− ζ

)
(2.4)

[remainder of chapter deleted]
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Chapter 3: Chapter 3

Chapter text goes here

Theorem 3.1. Matrix B has a decomposition given by B = ΘEλBE
−1Θ where E,

E−1, Θ and λB are N X N matrices containing real values.

Proof. text of your proof....................text of your proof.................... text of your

proof.................... text of your proof.................... text of your proof.................... text

of your proof.................... text of your proof.................... text of your proof....................

text of your proof....................

Corollary 1. If there is a Corollary to the Theorem

Definition 1. text for definition goes here
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Chapter 4: Chapter 4

Text goes here
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Appendix A: A Title Goes Here

Text for the 1st Appendix

Figure A.1: Awesome Image
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Appendix B: Title for 2nd Appendix
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