Introduction to Beamer

Beamer is a \LaTeX{} class for creating slides for presentations

Steven G. Wicker

Wake Forest University
Department of Mathematics
Winston Salem, NC
wickersg@wfu.edu

Updated September 2014

What is Beamer?!

Beamer is a \LaTeX{} class for creating presentations. It can also be used to create transparency slides. Preparing presentations with Beamer is different from preparing them with WYSIWYG programs like PowerPoint. A Beamer presentation is created like any other \LaTeX{} document: It has a preamble and a body, the body can contain sections and subsections, the different slides (called frames in Beamer) can structured using itemize and enumerate environments, and so on. The obvious disadvantage of this approach is that you have to know \LaTeX{} in order to use Beamer. The advantage is that if you know \LaTeX{}, you can use your knowledge of \LaTeX{} also when creating a presentation, not only when writing papers.

How to Get Beamer

1. Update to the latest version of MiKTeX (v. 2.9).
2. Download/install the COMPLETE MiKTeX system.
3. Recommended: The MiKTeX Net Installer (64bit)
4. PDF/\LaTeX{} a sample document to test it out.

Commands for Header and the Title Page

\documentclass[xcolor=dvipsnames]{beamer}
\usecolortheme[named=BurntOrange]
\usetheme{PaloAlto}
\title{}
\subtitle{}
\author{}
\institute{}
\date{}
\begin{document}
\begin{frame}
\titlepage
\end{frame}
\end{document}
General Set-up for a Slide

Original

\begin{frame}[fragile]
{\frametitle{Title of slide}}
{\framesubtitle{Subtitle}}
content of slide
definitions
equations
pictures
\end{frame}

[\texttt{fragile}] is needed for the \texttt{Verbatim} (and other) commands

Slide Setup

Alternative

\begin{frame}[fragile]
{Title}
{Subtitle}
content of slide
definitions
equations
pictures
\end{frame}

Less typing this way

Itemize vs. Enumerate

and Pause

An itemized/bulleted list:

1. item 1
2. item 2
3. item 3

Same structure for "itemized" to produce a bulleted list.

\begin{enumerate}
\item itemized item 1
\item itemized item 2
\item itemized item 3
\end{enumerate}

Another Way to Create Pauses

- Normal \LaTeX{} class.
- Easy overlays.
- No external programs needed.

\begin{itemize}
\item<3-> Normal \LaTeX{} class.
\item<2-> Easy overlays.
\item<1-> No external programs needed.
\end{itemize}
Third way for pauses
In lists

- The truths of arithmetic which are independent of PA in some sense themselves ‘contain essentially hidden higher-order, or infinitary, concepts’
- ‘Truths in the language of arithmetic which . . .
- That suggests stronger version of Isaacson’s thesis.

\begin{itemize}
\item \begin{frame}[plain]
Can be used to remove the theme to allow more room for an image or table.
\end{frame}\end{itemize}

Theorems and Such

\begin{definition}
A triangle that has a right angle is called a right triangle.
\end{definition}

\begin{theorem}
In a right triangle, the square of hypotenuse equals the sum of squares of two other sides.
\end{theorem}

\begin{proof}
We leave the proof as an exercise to our astute reader. We also suggest that the reader generalize the proof to non-Euclidean geometries.
\end{proof}

A Simple Displayed Equation

A displayed formula:

$$\int_{-\infty}^{\infty} e^{-x^2} \, dx = \sqrt{\pi}$$

Code:

\begin{itemize}
\item \texttt{\int_{-\infty}^{\infty} e^{-x^2} \, dx = \sqrt{\pi}}
\end{itemize}
Here we include three images, one each of PDF, PNG, and JPG types.

Sample code:
\includegraphics[width=0.1\textwidth]{picture.jpg}

Here is the first column.
\begin{columns}
\begin{column}{0.5\textwidth}
$f(x) = 2x^3 - 7x + 3$
\end{column}
\begin{column}{0.5\textwidth}
\centerline{\includegraphics[width=0.7\textwidth]{picture.png}}
\end{column}
\end{columns}

Use \begin{columns} with corresponding end for the columns environment.
Use \begin{column} with corresponding end to make the individual columns.

This sample uses the array environment, with $$ to create the display. Not labeled/numbered (Raynor):
\begin{array}{rlll}
-\Delta v & = \chi_{\overline B} & & \forall x \in \Omega \\
v & = 0 & & \forall x \in \partial\Omega.
\end{array}

Code:
$$
\left\{
-\Delta v = \chi_{\overline B} \quad \forall x \in \Omega \\
v = 0 \quad \forall x \in \partial\Omega.
\right.$$
Equation Environment provides a Label

Here is the previous example using the equation environment to get a label. It produces one label for both equations, which is convenient much of the time (Raynor):

\[
\left\{ \begin{array}{rlll}
-\Delta v &=& \chi_{\overline B} & \forall x \in \Omega \\
v &=& 0 & \forall x \in \partial \Omega.
\end{array} \right. \tag{1}
\]

Code:
\begin{verbatim}
\begin{equation}
\left\{ \begin{array}{rlll}
-\Delta v &=& \chi_{\overline B} & \forall x \in \Omega \\
v &=& 0 & \forall x \in \partial \Omega.
\end{array} \right.
\end{equation}
\end{verbatim}

\[\vec{\tilde{e}}_4 = \vec{e}_4 - \frac{\langle \vec{e}_1, \vec{e}_3 \rangle}{\|\vec{e}_1\|^2} \vec{e}_2 \]

\begin{eqnarray}
\vec{\tilde{e}}_4 &=& \vec{e}_4 - \frac{\langle \vec{e}_1, \vec{e}_3 \rangle}{\|\vec{e}_1\|^2} \vec{e}_2 \\
&=& \begin{bmatrix} \tilde{\beta} \\ 0 \end{bmatrix}.
\end{eqnarray}

Equation Array

Each Line is Labeled

The \texttt{eqnarray} environment, like many equation display environments, has two versions. \texttt{eqnarray} creates a multi-line displayed equation with labels (Raynor):

\begin{eqnarray*}
\vec{\tilde{e}}_4 &=& \vec{e}_4 - \frac{\langle \vec{e}_1, \vec{e}_3 \rangle}{\|\vec{e}_1\|^2} \vec{e}_2 \tag{2} \\
&=& \begin{bmatrix} \tilde{\beta} \\ 0 \end{bmatrix} \tag{3}
\end{eqnarray*}

Code:
\begin{verbatim}
\begin{eqnarray*}
\vec{\tilde{e}}_4 &=& \vec{e}_4 - \frac{\langle \vec{e}_1, \vec{e}_3 \rangle}{\|\vec{e}_1\|^2} \vec{e}_2 \\
&=& \begin{bmatrix} \tilde{\beta} \\ 0 \end{bmatrix}.
\end{eqnarray*}
\end{verbatim}

Equation Array with Pauses

\begin{eqnarray*}
2x^2 + 3(x-1)(x-2) &=& 2x^2 + 3(x^2 - 3x + 2) \\
&=& 2x^2 + 3x^2 - 9x + 6 \\
&=& 5x^2 - 9x + 6
\end{eqnarray*}

Code:
\begin{verbatim}
\begin{eqnarray*}
2x^2 + 3(x-1)(x-2) &=& 2x^2 + 3(x^2 - 3x + 2) \\
&=& 2x^2 + 3x^2 - 9x + 6 \\
&=& 5x^2 - 9x + 6
\end{eqnarray*}
\end{verbatim}
Case Definitions

Used when a definition have two or more cases. Use the case statement.

\[
f(x) = \begin{cases}
1 & -1 \leq x < 0 \\
\frac{1}{2} & x = 0 \\
1 - x^2 & \text{otherwise}
\end{cases}
\]

The code for the above example:

\[
f(x) = \begin{cases}
1 & -1 \leq x < 0 \\
\frac{1}{2} & x = 0 \\
1 - x^2 & \text{otherwise}
\end{cases}
\]

Align Environment - Unstarred and Starred

The advantage of the align environment is that you can force multiple parts of each line to align correctly vertically, making pretty multipart sets of equations (Raynor):

\[
\begin{align}
\frac{\partial u_i}{\partial t} + \sum_{j=1}^n u_j \frac{\partial u_i}{\partial x} &= \nu \Delta u_i - \frac{\partial p}{\partial x_i} + f_i(x,t) \\
x \in \mathbb{R}^n, t \geq 0 \\
\nabla \cdot \vec{u} &= 0 \\
\vec{u}(x,0) &= \vec{u}_0(x)
\end{align}
\]

Using the Array Environment to Create a Matrix

The equation environment is used to display a single equation with a tag (Raynor):

\[
J\mathcal{H}(\omega)|_{D_\omega} = \begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & a(\omega) & 0
\end{pmatrix}
\]

\[
\begin{equation}
J \mathcal{H}(\omega)|_{D_\omega} = \begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & a(\omega) & 0
\end{pmatrix}
\end{equation}
\]

Matrix Command and Types

\[
\begin{bmatrix}
x & y \\
z & v
\end{bmatrix}
\]

\[
\begin{pmatrix}
x & y \\
z & v
\end{pmatrix}
\]
More Matrix Types

\begin{pmatrix} x & y \\ z & v \end{pmatrix}

\begin{vmatrix} x & y \\ z & v \end{vmatrix}

\begin{Vmatrix} x & y \\ z & v \end{Vmatrix}

SG Wicker

Inline Matrix

In the previous slides all the matrices were displayed equations. Matrices can also be created inline with text, as such: \(\begin{bmatrix} u \\ v \end{bmatrix} \). This sample uses the bmatrix environment.

An Expression with matrices

\[
\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \times \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}
\]

Code:

\[
\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \times \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}
\]

This is just a displayed equation.

Another Matrix Example

\[
\begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix}
\]

Code:

\[
\begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix}
\]
Verbatim

Verbatim is very useful to display code. There are 2 options:

For a section of code:
\begin{verbatim}
Code
Code
Code
\end{verbatim}

\verb# short segment of code #

\documentclass[xcolor=dvipsnames,handout]{beamer}
\usepackage{pgfpages}
\pgfpagesuselayout{4 on 1}[border shrink=5mm]

"handout" gets rid of the pauses
The other commands produce 4 slides per page.
It seems that pgfpages disables links in a PDF.
Printing multiple pages on one page can also be handled by some printers.

\section*{URL's}

A regular URL:
\url{http://college.wfu.edu/math/}

A URL with text other than the web address:
WFU MATH

\usepackage{hyperref}

(Might not be needed in Beamer; is needed in Article.)
\textcolor{DarkOrchid}{\url{http://www.math.wfu.edu/}}
\textcolor{red}{\href{http://www.math.wfu.edu}{WFU MATH}}

Some other packages may disable links.

https://sites.google.com/a/wfu.edu/stevenwicker/tech-resources/latex

- Color palate that can be used in Beamer
- Beamer Themes
- Beamer Quick Start Guide
- Posters
- Thesis style
The End

Questions?