
Teaching Non-majors Computer Programming Using
Games as Context and Flash ActionScript 3.0 as the

Development Tools
 Yue-Ling Wong

Wake Forest University
Computer Science Department

Winston-Salem, NC 27109
(336) 758 3922

ylwong@wfu.edu

ABSTRACT
This paper describes a new course developed for non-majors to
teach them programming concepts using games as context and
Flash ActionScript 3.0 as the programming language. While Flash
provides a graphical environment, the curriculum is designed to
help students not to rely on graphical aids in coding by helping
them overcome the common anxiety in learning syntax and
dealing with syntax errors. The curriculum design and the
language choice will be discussed.

Categories and Subject Descriptors
K3.2 [Computers and Education]: Computer and Information
Science Education – computer science education, curriculum.

General Terms
Design, Experimentation

Keywords
Non-majors, introduction to programming, curriculum, games,
Flash ActionScript.

1. INTRODUCTION
This paper describes a new course that is designed for non-majors
who may be more attracted towards visual and interactive
multimedia programs. The course also intends to satisfy non-
majors' desire and need to learn programming concepts and
practice but may hesitate to attend CS1 programming courses. For
examples, many digital art students who are interested in creating
interactive projects are interested in learning programming,
particularly in Flash ActionScript and JavaScript.

While this new course is developed for non-majors, the concepts
of programming and algorithms taught in this new course follow
closely with those taught in CS1 introductory programming
courses and are applicable across programming languages and
applications.

2. WHY FLASH ACTIONSCRIPT
The language chosen for the new course has to be robust and full-
fledged enough to support the topics that are covered in CS1
introductory programming courses. There are several reasons for
the choice of Flash ActionScript 3.0.

2.1 Optional Object-Oriented Programming
(OOP)
ActionScript supports OOP but OOP is also optional. This affords
us the flexibility to start the course with non-OOP. OOP often is
considered as a difficult subject for most students who are novice
to computer programming. In this new course, I start with non-
OOP to familiarize students with syntax, and translating ideas into
statements and event handlers. OOP is then introduced in the
second half of the semester.

2.2 Availability of Drawing Tools
Flash environment provides the drawing tools to easily create
graphics to be used in the program. This frees up the time—that
normally are required to learn the drawing API—for students to
learn event handlers and to program to manipulate and animate
these graphics.

2.3 Easy Testing the Application
The Flash file can be tested by selecting one command (Control >
Test Movie) or one keyboard shortcut. Flash creates a SWF file
and automatically opens it in a Flash Player window. Any
compiler errors will be displayed in the Compiler Errors panel.
There is another panel for run-time errors. Although the errors are
sometimes cryptic, some provide the line number for the error.

2.4 Built-in Methods for Simple Collision
Detection
Collision detection between two objects is indispensable in most
of the computer games. However, collision detection algorithms
normally are not part of the curriculum of the introductory course.
ActionScript offers an advantage of having two built-in methods
for collision detection: between two objects (by using their
bounding boxes) and between a point and an object. These two
methods are sufficient for most situations.

Technical Report, 2008-1, Department of Computer Science, Wake
Forest University. Updated: 2009-06-25

The discussion of the pros and cons of these built-in methods
naturally leads to a distance-based approach. Pythagorean
theorem is reviewed in class and its application is explained in
distance-based collision detection of circles. The concept is then
translated into code in one of the labs.

2.5 Similar Syntax as Java and C++
ActionScript syntax is similar to Java and C++. This allows
students to transit to these languages should they decide to
continue onto the next level of computer programming classes.

To show you that Flash ActionScript 3.0 is very similar with other
programming languages and has evolved to the extent that it can
be used as a language to provide non-majors hands-on
introductory programming concepts that are applicable across
programming languages, here are some descriptions and examples
of Flash ActionScript 3.0.

2.5.1.1 Data Types
Data types supported in ActionScript 3.0 include String, int, uint,
Number (double precision), Array, Boolean, Object, and
Movieclip.

2.5.1.2 Operators
In addition to arithmetic and logical operators, bitwise operations
also are supported.

2.5.1.3 Variables
You can set up to require variable declaration. Here are two
examples of variable declaration.
var x:int = 5;
var name:String = "Lucy";

2.5.1.4 Arrays
Flash ActionScript supports multidimensional arrays and array
operations such as concat, join, pop, push, reverse, shift, slice,
sort, splice, and unshift for arrays. Here is an example to declare
an array.
var alphabet:Array = new Array("a","b","c");

2.5.1.5 Functions
Here is an example of a function definitions in ActionScript.
function restartGame(b:int, c:int):void
{
 score = b;
 health = c;
}

2.5.1.6 Event Handlers
Flash ActionScript supports mouse and keyboard events, and
additional Flash-specific events. Shown below is the he basic
structure of ActionScript code to handle events. The built-in
method addEventListener() is used.
function eventResponse(eventObject:EventType):void
{
 // statements
}
eventSource.addEventListener(EventType.EVENT_NAME,
eventResponse);

2.5.1.7 Program Flow
If-statements, switch statements, for-loops, while-loops are
supported in ActionScript. For example:
if (age < 40 || weight < 150)
{
 x = 2;
}
else
{
 x = 3;
}

switch (status)
{
 case 1:
 trace("walk");
 break;
 case 2:
 trace("jump");
 case 3:
 trace("kick");
 break;
 case 4:
 trace("duck");
 break;
 default:
 trace("stand");
}

var sum:uint = 0;
for (var i:uint = 1; i < 100; i++) {
 sum += i;
}

2.5.1.8 OOP
Shown below is an example code of defining a class.
public class Tree
{
 public static const GRAVITY:Number = -0.2;
 public static const FRICTN:Number = 0.98;
 public static const FOCALLENGTH:int = 250;
 private var elevation:Number;

 public function Tree()
 {
 elevation = 50;
 applyLinearPerspective();
 }
 public function applyLinearPerspective()
 {
 //statements
 }
}

To create subclass, you use the keyword extends. For example:
class OakTree extends Tree
{
}

The keyword override is used to redefine inherited methods in
ActionScript 3.0.

3. WHY GAMES AS CONTEXT
Computer games have been used in a various computer science
classes [2] (such as CS1 [1, 3, 4, 5], CS2 [3], and computer

graphics [6]) as a motivator and a mean to help students
understand the underlying concepts and principles. The course
described in this paper shares many of the same goals and ideas.
For example, the course is not intended to be a game design
course. In addition, games as context are chosen as a theme in
both lecture and lab components while following the set of
expected outcomes of traditional CS1 courses. These courses
often use Java as an introductory programming language.
However, the target student population for this course is the non-
majors.

Games often have multiple sprites, each of which has the same
types of properties and can perform similar tasks. The concepts of
OOP thus naturally apply in game programming. One of the
requirements for the term project—programming a game—is to
implement the basic OOP—creating classes, instantiating them to
generate multiple objects, and making them perform tasks by
invoking the class methods. Inheritance and polymorphism are
considered as advanced topics in this course. The implementation
of these two concepts in the project is considered as an extra
credit. It turned out that almost everyone's project made use of
subclasses and overrode inherited methods to various extent. For
most projects, it was driven by the games' need to create
subclasses.

4. CURRICULUM DESIGN
The curriculum of this course was guided by the expected
outcomes of traditional CS1 courses that use Java as an
introductory programming language. However, because of the
interactive and visual nature of computer games, these
characteristics play an important role in determining the order of
the topics to be taught. The order may be different from the
traditional courses. For example, the mouse and keyboard event
handling are introduced early in the semester. Same is true for the
manipulation of the x- and y-coordinates, size, location, and
transparency of an object (or a Movieclip instance.) These topics
usually are taught later in the semester in traditional CS1
introductory programming courses.

Furthermore, there are some additional concepts (such as gravity,
friction, and collision detection) that may not be part of the
traditional CS1 courses but are applied quite often in
programming the games.

4.1 Learn to Read First, Then Write
When we learn a new language—a human language—we first
learn to read before we start to write. When we first learn to read,
we learn the spelling of single words and grammar before reading
sentences. When we start to read an essay, the words and
grammar start to make more sense. When we start to write in that
new language, we start out with simple sentences and short essay
with an idea or topic assigned to us to write about. Then we start
to express our own thoughts in longer essays. This new course
follows the similar approach to introduce students to a
programming language.

An introduction to syntax is often introduced in bits and pieces—
one keyword or construct at a time. To give the students a big
picture of how all different pieces come together in a functional
program, students are given a functional game program where
they are asked to identify keywords and programming constructs
(such as variables, constants, if-else statements, operators, and

predicting values of variables) immediately after an introduction
to the syntax. Students can see the code of a functional game and
compile it even before they start to write any code.

4.2 Practice Reading Error Reports Early On
While computer programmers accept that typos and syntax errors
are common in coding practice, students often get frustrated when
their script fails only because of a misspelled word or an extra
semi-colon. To help students build confidence in reading error
reports and troubleshoot their code, a lab is designed such that the
students are given a functional game program and asked to make
a typo in the code, compile the program, and read the error.
Students are also asked to have their peer to introduce two typos
in the program, and they need to troubleshoot to identify and fix
the errors. This lab is introduced before the students start to write
code on their own. It intends to lessen the possible frustration by
explaining to them that typos and syntax errors are common
experience, and providing them a sandbox to practice reading and
fixing errors before they debug their own code.

4.3 Introduce Vector Graphics and
Bitmapped Images Followed by Animation
Basics
To get students acquainted with Flash, lab exercises for drawing
tools and animation were included at the beginning of the
semester. Animation basics (concepts such as keyframes,
tweening, and frame rate) are introduced after the introduction to
vector graphics. Because Flash is a vector graphics program, it is
natural to introduce vector graphics, which in turn naturally leads
to a discussion of bitmapped images versus vector graphics.

4.4 Introduce Event Handling Early On
As explained earlier, the event handling needs to be introduced
early on in the semester so that students can start adding
interactivity even in the first game lab assignment.

4.5 Design of Labs
The first game programming lab starts in week 4. It is
programming a Pong-type of game. It is scheduled to be right
after an introduction to event handling. It provides students an
opportunity to program with the mousemove event handler (using
the mouse to control the paddle) and the frame event handler (to
move the ball continuously on its own.) The lab also provides the
opportunity to control the x and y properties of an object (or
Movieclip instance). The built-in collision detection methods are
introduced to detect when the paddle hits the ball. This also
requires writing if-statements. The lab also introduce the concept
of using functions to reduce code duplication.

The side-scrolling platform game requires keyboard event
handling, modeling gravity effect on the hero, and collision
detection. These latter two topics are introduced within a week
before the lab.

The Tic-Tac-Toe lab provides students an opportunity to use a 2-
dimensional array to model a game board. This lab is arranged to
be right after an introduction to arrays.

The lab right after the concepts of OOP are taught is to modify the
previous Pong game lab into OOP version so that the game has
multiple balls. A Ball class is created and instantiated to generate
multiple Ball objects. This lab builds on its non-OOP version of

an earlier lab. The event handling and the code regarding the
control of the paddle and ball control are already there. This
allows students to focus on the OOP component.

The subsequent lab creates a more complex program using OOP
from scratch. It involves creating a class and instantiating it to
generate 100 objects. This lab also introduces concepts of linear
perspective to create a 3-D environment that allows the player to
use keyboard to move forward, backward, left, and right, and fly
up.

The side-scrolling platform game (Figure 1) and 3-D fly-through
(Figure 2) labs allow students to express their creativity of the
visual elements while following the same structure of the code.

(a)1

(b)2

Figure 1. Examples of students' side-scrolling platform lab.

Many of the graphics created in the drawing and animation labs at
the beginning of semester are used in these programming labs.
This frees up students' time in the graphic creation in these labs so
they can focus more on the coding.

1 Courtesy of Corey Lons
2 Courtesy of Kevin Crace

4.6 Design of Term Project
The labs are very structured and designed to let students practice
translating small pieces of ideas into code. There are no game
design or planning required from the students. On the contrary,
the term project is to provide students opportunity to plan and
work towards their game ideas more independently. Some
projects extended the labs while some were created from scratch.

(a)3

(b)4

Figure 2. Examples of students' 3-D fly-through lab.

5. RESULTS AND CONCLUSIONS
The goals of this paper are to share my experience of the new
course for non-majors and generate interest and discussion about
teaching computer programming within the context of computer
games. The curriculum design issues discussed in this paper may
serve as a model for introductory programming courses that use
any programming languages.

To help students build confidence learning new programming
languages on their own or taking a CS1 course in the future, the
class also exposes the students to programs written in other
languages, such as Java, C++, and JavaScript, at the end of the

3 Courtesy of Liyang Diao
4 Courtesy of Marc Legrand

semester. The students are given Java and C++ code of functional
games. The programs are written in parallel to one of the labs that
they have written in ActionScript so that they can easily see the
similarities. The students were asked to identify the keywords and
programming constructs, and compile the code using Microsoft
Visual C++ Express. In the final exam, students were asked to
identify the programming constructs in Java, C++, and JavaScript
code. Almost all of the students were able to identify these
constructs.

6. ACKNOWLEDGMENTS
This material is based on work supported by the National Science
Foundation under Grant Numbers DUE-0127280 and DUE-
0340969.

7. REFERENCES
[1] Bayliss, J. D. and Strout, S. 2006. Games as a "Flavor" of

CS1. In Proceedings of the 37th SIGCSE Technical
Symposium on Computer Science Education (Houston,
Texas, March 1-5, 2006), 500-504. ACM Press.

[2] deLaet, M., Kuffner, J., Slattery, M. C., and Sweedyk E.
(moderator) 2005. Computer Games and CS Education: Why
and How. In Proceedings of the 36th SIGCSE Technical

Symposium on Computer Science Education (St. Louis,
Missouri, February 23-27, 2005), 256. ACM Press.

[3] Giguette, R. 2003. Pre-Games: Game Designed to Introduce
CS1 and CS2 Programming Assignments. In Proceedings of
the 34th SIGCSE Technical Symposium on Computer
Science Education (Reno, Nevada, February 19-23, 2003),
288-292. ACM Press.

[4] Leska, C. and Rabung, J. 2004. Learning O-O Concepts in
CS I Using Game Projects. In Proceedings of ITICSE'04
(Leeds, United Kingdom, June 28-30, 2004), 237. ACM
Press.

[5] Leutenegger, S. and Edgington, J. 2007. A Games First
Approach to Teaching Introductory Programming. In
Proceedings of the 38th SIGCSE Technical Symposium on
Computer Science Education (Covington, Kentucky, March
7-10, 2007). ACM Press.

[6] Sung, K., Shirley, P., and Rosenberg, B. R. 2007. In
Proceedings of the 38th SIGCSE Technical Symposium on
Computer Science Education (Covington, Kentucky, March
7-10, 2007), 249-253. ACM Press.

