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Virtual database screening allows for millions of chemical compounds to be computationally selected based
on structural complimentarity to known inhibitors or to a target binding site on a biological macromolecule.
Compound selection in virtual database screening when targeting a biological macromolecule is typically
based on the interaction energy between the chemical compound and the target macromolecule. In the present
study it is shown that this approach is biased toward the selection of high molecular weight compounds due
to the contribution of the compound size to the energy score. To account for molecular weight during energy
based screening, we propose normalization strategies based on the total number of heavy atoms in the
chemical compounds being screened. This approach is computationally efficient and produces molecular
weight distributions of selected compounds that can be selected to be (1) lower than that of the original
database used in the virtual screening, which may be desirable for selection of leadlike compounds or (2)
similar to that of the original database, which may be desirable for the selection of drug-like compounds.
By eliminating the bias in target-based database screening toward higher molecular weight compounds it is
anticipated that the proposed procedure will enhance the success rate of computer-aided drug design.

INTRODUCTION One important issue that has not been adequately dealt
with to date in most docking approaches, and that may
“adversely influence the hit rate, is the molecular weight
e(MW) of the selected molecules, though several studies have
mentioned its impact on compound selectibt It is
accounted for partially in the energy function implemented

Computer-based virtual database screening for lead com
pounds has become one of the integral approaches in th
structure-based drug discovery prockBatabase searching
or docking approaches that select small molecular weight

compounds that are structurally or energetically comple- in FlexX3? by including the number of rotatable bonds in

melntar)ll t(r)] a plétatlve bmdlngblsne ona t;'ollqg'fﬁl mat‘:[r(f)— the scoring criteria, which was intended to account for the
molecu’e have been reasonably SUCCESSIULIN the pas eWentropy penalty for constraining the rotatable bonds upon

years?® However, the hit rate, or percentage of biologically binding. While such a correction is appropriate it does not

active compound.s out of those selgctgd \_/ia the SCr%mngaccount for the fact that the overall van der Waals (VDW)
procedL_Jre, IS typlcally'ZO% or Iesg indicating the need for interaction energy, a term suggested to be important for
further improvements in the selection procedure. ligand affinity 22is the sum over all pairs of ligand and target
A key element in determining the hit rate of virtual protein atoms within a specified cutoff distance. Therefore,
screening is the energy functlorloused for prediction of the energetic selection of compounds that includes a VDW
binding orientation and energy:'® Currently, compounds  agtractive contribution, or similar term, will favor larger MW
are selected based on a variety of energetic scoring mEthOdscompounds since they have a larger number of atoms
For example, Chen et &nd Enyedy et af identified lead  jpteracting with the target molecule. Thus, there will be a
inhibitors targeting HIV-1 intergrase (IN) and Bcl-2, respec- tendency for the selection of larger molecules even though
tively, basltzad on the empirical energy function implemented they may not necessarily be as structurally complementary
in DOCK.** A similar energy function with preferences for g the target binding site as smaller compounds. Adjustment
hydrogen bonds is implemented in FleXXOther energy  of the energy score to account for the size of the molecule
based jfg””g methods include potentials of mgan force may correct for this problem. In the present manuscript, a
(PMF)41¢ free energy grids and many otherd? An  hormajization method to adjust the energy score based on
extensgllgof these approaches is the consensus-scoringhe total number of heavy atoms in a molecule is presented.
method®*° that combines two or more scoring functions. Based on this approach the tendency of energy based scoring

This'mefthod was syggested_to be more robl{st than usingmethods to bias toward the selection of higher molecular
the individual scoring functions, but the hit rate was weight compounds is controlled.

comparable due to the inherent limitation of the energy

I Previous work in our laboratory has targeted the Y3-
functions?®

binding site on HIV-1 integragévia database screening of
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CHEMDIV?2¢ database, to test the influence of MW on the Table 1. Mean Molecular Weights and Standard Errors for the
compounds selected using the DOCK energy scoring func- WD! and CHEMDIV Databases and for the 5000 Compounds
tion2 directly and following normalization. It is shown that Selected Using Different Scoring and Normalization Procedures

based on the normalization strategy applied, compound vdw attractive total energy
selection could be biased to (1) a distribution that had MWs normalization 40 60 40 60
reminisce_nt (_)f those associated Wi_th !e_adlike compotinds WDI Full Database Mean 352 8
or (2) a distribution of MWs that significantly overlapped none 36912 382+ 12 389+ 15 403+ 16
with the entire database MW distribution. N 258+24  258+24  284+7 28447
N2/3 289+6  290+6  320+7  322+7
N2 310+5  313+5  339+10 343+9
METHODS NI 332410 338+9 359+ 11 365+ 12
Two_cher?icscl) Odoagab%sggb (\)/ggl and CI—C|jEMDIV w_ithI vdw attractive total energy
approximately an compounds, respectively, lizati 20 60 20 60
were used for docking to the Y3 binding site of HIV-1 normatza IO?:HEMDIVF | Database Mean 385 7
; i ; . ull Database Mean
integrase. Three-dimensional (3D) structures of the com none ASLE 11 4404 13 449+ 14 453+ 19
pounds in the databases were generated as follows: the 305+ 13 305+ 12 309+ 13 309+ 13
2-dimensional (2D) structural data files (SDF) from the N2/3 346+ 8 346+ 7 350+ 10 350+ 10
vendors were first converted to 2D MOL2 format using the Nig 369+2 3702  375£5  377+4
program SDF2MOL2 implemented in DOCK 4.02Hy- N 393+£3  395£3  400+5  404+6

drogens and Gasteiger charges were then calculated and . Mean and standard error values were calculated by separating each
added to the 2D MOL2 structures followed by 500 steps of data set into 5 independent data sets (e.g. a set of 5000 compounds
minimization with the POWELL conjugate gradient algo- MWs were separated into 5 1000 compound MW sets), the mean
rithm using the SYBYL6.78 molecular modeling package. obtained for each individual set and then obtaining the mean and the
The protonation state of the ligands was taken directly from Standard error over the 5 individual meafs.

the suppliers.

DOCK 4.0.22was used to carry out the database screen- problem and resulting solution are also applicable to a
ing. Modeling of the binding site and selection of the sphere chemical database typically used for database searching. This
set were described previouslyThe anchor-search-first motivated the selection of CHEMDIV, a diverse collection
algorithm was used to initially place the ligands and their of compounds designed for database searching.
conformational space was searched via the standard torsion \plecular Weight Distributions from Database Screen-
drive. While the added segment was minimized at every jng The MW distributions of the 5000 selected compounds
intermediate stage, re-minimize-layer-numbers of 3 and 5 pased on both the VDW attractive and total energy scores
were used for the large database screening (method one) angre presented in Figure 1A,B, for the WDI and CHEMDIV
for the second, more rigorous search (method two), respec-gatapases, respectively. A significant observation is that all
tively. Anchor re-minimization during the conformational the gistributions of the docked compounds are shifted toward
search was also used in method two. A dielectric function the high MW region relative to the full database distributions
of 4r and a cutoff of 10.0 A were used for generating the in poth cases. These results are quantitated in Table 1, where
steric and electrostatic environment at the binding site with jt can pe seen that the mean MW of the 5000 selected
the GRID® module of DOCK. In all cases the docking and  ¢ompounds (normalization: none) are larger than that of the
resulting binding orientations were based on the total energy, original database in all cases. For example, with the WDI
such that selection of compounds via the VDW attractive the mean MW of the entire database is 359, while that from
energy used the docked orientations based on the totakhe scoring based on the VDW attractive term with a 40 non-
energy. Heavy atom cutoff numbers of 40 and 60 were usedpydrogen atom cutoff is 369 and increases to 382 with a 60
to compare its influence on compound selection. Solvent atom cutoff. Similar increases in the mean MW are seen with

accessible surface aréasf the small molecules were  he total energy scoring as well as with the CHEMDIV
calculated with CHARMM! program and the MMF# force database.

field implemented in CHARMM using a 1.4 A probe radius.

The results based on the VDW attractive or total energy
scores are similar since total scores for most molecules were
dominated by the VDW attractive energy (see Supporting

In the following, results are presented showing how Information Figures S1 and S2). These results show that
database screening using the program DOCK leads to thethere is a bias toward the selection of high MW compounds
selection of compounds with a higher MW distribution than when doing target-based database screening, leading to MW
those in the original database. A normalization procedure is distributions skewed to values larger than those typically
then proposed and tested that corrects for this bias. Twoseen for pharmacologically active compounds as judged
databases have been selected for the study. The WDI wady the WDI. As mentioned above, similar upshifting of the
selected as it contains a collection of pharmacologically MW of selected compounds has also been reported in
active, or druglike, compounds, including therapeutic agents database screening work based on PMF scdfit@early,
currently on the market. Since it may be considered undesir-a normalization procedure to correct for the bias toward
able to shift the MW distribution of selected compounds higher MW compounds would be desirable, as lower MW
above that of known pharmacologically active compounds, compounds typically have improved absorption and disposi-
inclusion of a database of biologically active compounds is tion properties® In addition, when considering the use of
important. Alternatively, it is necessary to check if the database screening in drug design, it may be considered

RESULTS AND DISCUSSIONS
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Figure 1. Molecular weight distribution for the top 5000 molecules  Figure 2. Molecular weight distribution for the top 5000 molecules
selected from the (A) WDI and (B) CHEMDIV databases based selected using the N normalization scoring method from the (A)
on different scoring: VDW attractive energy and cutoff 60 (red) wbDI and (B) CHEMDIV databases based on different scoring:
and total energy and cutoff 60 (green). For comparison, the original normalized VDW attractive energy and cutoff 60 (red) and
database distributions are included (blue). normalized total energy and cutoff 60 (green). For comparison, the
original database distributions are included (blue).
desirable to select compounds with lower MW than those
seen in the WDI as they may be more appropriate for lead expensive, especially in situations where it must be deter-
compound structural optimizaticf. mined for a million or more molecules, a situation common
Score Normalization Based on the Number of Non-  in virtual database screening. Instead, one may consider that
Hydrogen Atoms. Empirically, the bias toward the selection N is directly proportional to the volume of a molecule and,
of higher MW compounds in database screening is not assuming a simple geometry, is also proportional to the radius
surprising given that additional favorable interactions be- cubed, f. Based on r being proportionaMiand the surface
tween a ligand and a receptor are available to larger area being proportional té,1the surface area is proportional
compounds. This is especially true for the VDW attractive to N?3. To test this model, the solvent accessible surface
term, which is favorable for all atom pairs and leads to area of 4523 randomly selected molecules from the CHEM-
consideration of a normalization procedure based on theDIV database was calculated and is plotted agairtstiN
number of non-hydrogen atoms, N, in each ligand. This is Figure 3. As expected a linear relationship is present(R
similar to the use of scoring on a per heavy atom basis as0.91). Accordingly, the VDW attractive and total energy
used in the SmoG scoring functiéhAccordingly, the VDW scores were renormalized usingNand the resulting MW
attractive or total energy for each compound was divided distributions presented in Figure 4. For both WDI and
by the number of non-hydrogen atoms in each respective CHEMDIV, there is still a downshifting of the MW
compound and the top 5000 compounds selected based onlistribution below those in the entire databases, though the
those normalized scores. Presented in Figure 2 are theeffect is smaller than that observed with N normalization
resulting MW distributions for the two databases and for the (Figure 2). The mean MWs in Table 1 show the values for
different scoring criteria. As is evident, score normalization the N selected compounds to be smaller than the mean
based on N leads to a significant downshift in the MW of values from the entire databases.
the selected compounds as compared to the total databases. Motivated by the shift in MW distributions upon going
Consistent with this shift are the mean MWs reported in from N to N?3 normalization, tests using® normalization
Table 1 for N normalization. Thus, use of the number of were undertaken. Presented in Figure 5 and Table 1 are the
non-hydrogen atoms for score normalization leads to a MW distributions and mean MWs, respectively, following
significant overcorrection, leading to a strong bias toward rescoring with normalization by ¥. Both Figure 5 and
low MW compounds. However, such an overshift may be Table 1 show that this normalization brings the MW
considered desirable in database screening efforts where thelistribution of selected compounds into better agreement with
goal is the identification of leadlike versus druglike com- that of the entire databases, although a shift to small MWs
pounds* is evident. Therefore, normalization vid/Awas tested, with
Alternatively, a normalization procedure may be consid- the resulting MW distributions shown in Figure 6 and the
ered that is based on the surface area of a molecule. In thismean values in Table 1. With the WDI, the selected com-
model, the increase in the surface area of a molecule as thgounds are still shifted to lower MWs, while with CHEMDIV
number of atoms increases would allow for more favorable the MW distribution of the selected compounds is in good
interactions, thereby biasing toward high MW compounds agreement with that of the full database. The larger discrep-
during screening. However, determination of the solvent ancy with the WDI appears due to the number of high MW
accessible surface area of a molecule is computationallycompounds in the entire database, which increases the mean.
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Figure 3. Two-thirds root of the number of heavy atoms?aversus the solvent accessibility for 4523 compounds randomly selected
from the CHEMDIV database. The line represents the least-squares fit to the data.
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Figure 4. Molecular weight distribution for the top 5000 molecules Figure 5. Molecular weight distribution for the top 5000 molecules
selected using the 3¢ normalization scoring method from the (A)  selected using the ® normalization scoring method from the (A)
WDI and (B) CHEMDIV databases based on different scoring: WDI and (B) CHEMDIV databases based on different scoring:
normalized VDW attractive energy and cutoff 60 (red) and normalized VDW attractive energy and cutoff 60 (red) and
normalized total energy and cutoff 60 (green). For comparison, the normalized total energy and cutoff 60 (green). For comparison, the
original database distributions are included (blue). original database distributions are included (blue).

Thus, the empirically motivated use of'Nfor score The “rule of five” used for lead identification and
normalization yields a MW distribution of selected com- optimizatior® lends additional support to the advantage of
pounds that is most similar to that of the original database the proposed normalization procedure. The decreased MW
being screened. However, the use &€Ii¢ difficult to justify distributions may be considered desirable as compounds with
based on physical considerations. It is therefore suggestedMWs greater than 500 daltons will typically have lower
that the N3 normalization factor represents a collection of biological membrane permeability and therefore lower bio-
physical phenomena, including the surface area term sug-availability3® This is supported by a previous database
gested above. It should be noted that the relationship of screening study where selected compounds that were bio-
surface area to ¥ is almost identical to that of ¥, with logically active had a lower MW distribution than drugs on
R = 0.91. the market*
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Figure 6. Molecular weight distribution for the top 5000 molecules SUMMARY
selected using the 1 normalization scoring method from the (A) The most important issue in virtual database screening for
\r’]\é?r:n ;?feéB)\/g\l;'vEgt?r%tﬁ/?agﬁ:?;ybgrsfjd c%r:o?flﬁg(r)er?resd%oré%%: lead compounds is the ability of the protocol used to generate
normalized total energy and cutoff 60 (green). For comparison, the a satlsf_ylng hit rate. In _th's work it is showr_1 that use of
original database distributions are included (blue). interaction energy scoring alone for choosing molecules
favors the selection of high MW compounds. However, by

To further illustrate the influence of I normalization normalizing the energy score based on the number of heavy
on the MW distribution of the selected compounds, the 5000 atoms, N, in the ligands the bias toward higher MW
compounds selected from the WDI database using thecompounds can be eliminated. Moreover, by selection of the
method one screening protocol based on VDW attractive normalization procedure based on the power of N, a target
energy were further screened using method two with 500 range for the MW distribution can be selected. For example,
compounds selected based on the total energy score. Withougf the goal of a study is the identification of druglike
normalization after method one and method two screening, compound$# normalization via N2 would be appropriate
121 out of 500 compounds had MWs greater than 500 as it yields a distribution similar to that of the entire database,
daltons, compared with 38 out of 500 compounds witf N whereas if leadlike molecules are the goal, normalization via
normalization used in both steps. The mean molecular N is appropriate as it yields a MW distribution for the
weights of the distributions were 447 and 367 daltons for selected compounds with mean values of 300 daltons or less
un-normalized and normalized cases, respectively, versus 359Table 1). It is anticipated that this approach may enhance
(Table 1) for the entire WDI database. Consistent with the the hit-rate of database screening efforts.
results presented above, the more rigorous method two | the present study we have applied our normalization to
docking protocol was again biased toward the higher MW gy g single binding site on HIV IN using the program
region without normalization. _ DOCK and its energy scoring functidhiHowever, in work

Influence of Normalization on Ligand-Target Compli- by Muegge et al*4 a similar upshift of the MW distribution
mentarity. A final question was whether the proposed \yas observed using DOCK with a PMF based scoring
normalization procedure enhances the complimentarity be-fynction1s Thus, the proposed approach is anticipated to be
tween the ligand and the target binding site. This was gpplicable to a variety of target-based database screening
addressed by analyzing the ratio of the buried surface areassygies, although it is suggested that N to various powers be
of the ligands in the bound state relative to that of the tested to identify the value that yields the desired MV
unbound ligand for the unnormalized an_d’?l\hormallzed ~ distribution appropriate for each particular project.
scores for the WDI method one screen using VDW attractive
energy and 60 atom cutoff. As is shown in Figure 7, the ACKNOWLEDGMENT
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