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Maximum Likelihood Estimation: some basics

We start with the linear regression model expressed in matrix form,

y = Xβ+u (1)

and we will assume that the error term is not only i.i.d. but also follows the normal distribution: for
each element, ui, of the vector u we have

ui ∼ N(0, σ 2)

For a random variable x with mean µ and standard deviation σ , the normal density (pdf) is
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We now specialize this to observation i in relation to the model given by (1). The mean or expected

value of yi equals Xiβ (since E(ui) = 0), and the standard deviation of yi is just the standard deviation
of the error term, σ . So the pdf is
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This is known as the likelihood of observation i (conditional on Xi, and given the parameters β and
σ ). We almost always work with the log of the likelihood (written as `). Taking the log of (2) we get
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To find the joint likelihood of an entire data sample we take the product of the likelihoods of all the
individual observations (like probabilities, likelihoods obey the multiplication rule). In log terms, this
means adding up the contributions given by (3); for a sample of n observations this gives
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Now, from the Maximum Likelihood point of view, the task of estimation is to find an estimate
β̂ that maximizes the joint likelihood of the sample data (which is equivalent to maximizing the log
likelihood). Let’s use the notation SSR(β̂) to indicate

∑n
i=1(yi − Xiβ̂)2. So we want to choose β̂ to

maximize
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But what about the (unknown) σ? A common first step is to concentrate the log likelihood with respect
to this term. This means finding the partial of `() with respect to σ , setting it to zero, and then solving
for σ . The relevant equation is

∂`(y, β̂, σ)
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which gives

σ 2 = SSR(β̂)
n

Substituting the above expression into (5) we get
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Now note that β̂ enters the log likelihood only via the SSR function. This means that maximizing the
likelihood amounts to the same thing as minimizing the SSR, which of course is what OLS does. This
equivalence is specific to the linear model.


