Notes on Probability

Allin Cottrell

The classical approach

The probability of any event A is the number of outcomes that correspond to A, n_{A}, divided by the total number of equiprobable outcomes, n, or the proportion of the total outcomes for which A occurs.

$$
0 \leq P(A)=\frac{n_{A}}{n} \leq 1
$$

Example: let A be the event of getting an even number when rolling a fair die. Three outcomes correspond to this event, namely 2, 4 and 6, out of a total of six possible outcomes, so $P(A)=\frac{3}{6}=\frac{1}{2}$.

Complementary probabilities

If the probability of some event A is $P(A)$ then the probability that event A does not occur, $P(\neg A)$, must be

$$
P(\neg A)=1-P(A) .
$$

Example: if the chance of rain for tomorrow is 80 percent, the chance that it doesn't rain tomorrow must be 20 percent.
When trying to compute a given probability, it is sometimes much easier to compute the complementary probability first, then subtract from 1 to get the desired answer.

Addition Rule

A means of calculating the probability of $A \cup B$, the probability that either of two events occurs.

With equiprobable outcomes, $P(A)=\frac{n_{A}}{n}$ and $P(B)=\frac{n_{B}}{n}$.
First approximation: $P(A \cup B)=\frac{n_{A}+n_{B}}{n}$.
Problem: $n_{A}+n_{B}$ may overstate the number of outcomes corresponding to $A \cup B$: we must subtract the number of outcomes contained in the intersection, $A \cap B$, namely $n_{A B}$.

Thus the full version of the addition rule is:

$$
\begin{aligned}
P(A \cup B) & =\frac{n_{A}+n_{B}-n_{A B}}{n} \\
& =\frac{n_{A}}{n}+\frac{n_{B}}{n}-\frac{n_{A B}}{n} \\
& =P(A)+P(B)-P(A \cap B)
\end{aligned}
$$

Multiplication rule

Clearly

$$
\frac{n_{A B}}{n} \equiv \frac{n_{A}}{n} \times \frac{n_{A B}}{n_{A}}
$$

(the RHS is the LHS multiplied by $n_{A} / n_{A}=1$).
$n_{A B} / n \equiv P(A \cap B)$ is the probability that A and B both occur.
$n_{A} / n \equiv P(A)$ represents the "marginal" (unconditional) probability of A.
$n_{A B} / n_{A}$ represents the number of outcomes in $(A \cap B)$ over the number of outcomes in A, or "the probability of B given A ".

This can be written as $P(B \mid A)$; it's called a conditional probability.

The general form of the multiplication rule for joint probabilities is therefore:

$$
P(A \cap B)=P(A) \times P(B \mid A)
$$

Special case: A and B are independent. Then $P(B \mid A)$ equals the marginal probability $P(B)$ and the rule simplifies:

$$
P(A \cap B)=P(A) \times P(B)
$$

Exercises

- The probability of snow tomorrow is .20 , and the probability of all members of ECN 215 being present in class is .8 (let us say). What is the probability of both these events occurring?
- A researcher is experimenting with several regression equations. Unknown to him, all of his formulations are in fact worthless, but nonetheless there is a 5 per cent chance that each regression will-by the luck of the draw - appear to come up with 'significant' results. Call such an event a 'success'. If the researcher tries 10 equations, what is the probability that he has exactly one success? What is the probability of at least one success?

Marginal probabilities

$$
P(A)=\sum_{i=1}^{N} P\left(A \mid E_{i}\right) \times P\left(E_{i}\right)
$$

where E_{1}, \ldots, E_{N} represent N mutually exclusive and jointly exhaustive events.
Example:

conditional on $E_{i}:$			
	snow $\left(P=\frac{2}{10}\right)$	$\neg \operatorname{snow}\left(P=\frac{8}{10}\right)$	
P (all here)	$\frac{6}{10}$	$\frac{9}{10}$	
product	$\frac{12}{100}$	$\frac{72}{100}$	$\Sigma=\frac{84}{100}$

Conditional probabilities

$$
P(A \mid B) \neq P(B \mid A)
$$

the probability of A given B is not the same as the probability of B given A.
Example: The police department of a certain city finds that 60 percent of cyclists involved in accidents at night are wearing light-colored clothing. How can we express this in terms of conditional probability? Should we conclude that wearing light-colored clothing is dangerous?

In general,

Discrete random variables

The probability distribution for a random variable X is a mapping from the possible values of X to the probability that X takes on each of those values.

$P\left(X=x_{i}\right)$	$x_{i} P\left(X=x_{i}\right)$
$\frac{1}{6}$	$\frac{1}{6}$
$\frac{1}{6}$	$\frac{2}{6}$
$\frac{1}{6}$	$\frac{3}{6}$
$\frac{1}{6}$	$\frac{4}{6}$
$\frac{1}{6}$	$\frac{5}{6}$
$\frac{1}{6}$	$\frac{6}{6}$
$\frac{6}{6}=1$	$\frac{21}{6}=3.5=E(X)$

$$
E(X) \equiv \mu_{X}=\sum_{i=1}^{N} x_{i} P\left(X=x_{i}\right)
$$

The mean is the probability-weighted sum of the possible values of the random variable.

Uniform distribution (one die):

Variance

Probability-weighted sum of the squared deviations of the possible values of the random variable from its mean, or expected value of the squared deviation from the mean.

$$
\begin{aligned}
\operatorname{Var}(X) \equiv \sigma_{X}^{2} & =\sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2} P\left(X=x_{i}\right) \\
& =E(X-\mu)^{2} \\
& =E\left(X^{2}-2 X \mu+\mu^{2}\right) \\
& =E\left(X^{2}\right)-2 E(X \mu)+\mu^{2} \\
& =E\left(X^{2}\right)-2 \mu^{2}+\mu^{2} \\
& =E\left(X^{2}\right)-\mu^{2} \\
& =E\left(X^{2}\right)-[E(X)]^{2}
\end{aligned}
$$

Note that in general $E\left(X^{2}\right) \neq[E(X)]^{2}$.

Two dice
Sample space:

$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$	$(1,5)$	$(1,6)$
$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$	$(2,5)$	$(2,6)$
$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$	$(3,5)$	$(3,6)$
$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$	$(4,5)$	$(4,6)$
$(5,1)$	$(5,2)$	$(5,3)$	$(5,4)$	$(5,5)$	$(5,6)$
$(6,1)$	$(6,2)$	$(6,3)$	$(6,4)$	$(6,5)$	$(6,6)$

1.0	1.5	2.0	2.5	3.0	3.5
1.5	2.0	2.5	3.0	3.5	4.0
2.0	2.5	3.0	3.5	4.0	4.5
2.5	3.0	3.5	4.0	4.5	5.0
3.0	3.5	4.0	4.5	5.0	5.5
3.5	4.0	4.5	5.0	5.5	6.0

Example: variance for one die

x_{i}	$P\left(X=x_{i}\right)$	$x_{i}-\mu$	$\left(x_{i}-\mu\right)^{2}$	$\left(x_{i}-\mu\right)^{2} P\left(X=x_{i}\right)$
1	$\frac{1}{6}$	-2.5	6.25	1.0417
2	$\frac{1}{6}$	-1.5	2.25	0.3750
3	$\frac{1}{6}$	-0.5	0.25	0.0833
4	$\frac{1}{6}$	+0.5	0.25	0.0833
5	$\frac{1}{6}$	+1.5	2.25	0.3750
6	$\frac{1}{6}$	+2.5	6.25	1.0417
\sum	1	0		$2.917=\operatorname{Var}(X)$

16

Measures of Association

The covariance of X and Y is the expected value of the cross-product, deviation of X from its mean times deviation of Y from its mean.

$$
\operatorname{Cov}(X, Y)=\sigma_{X Y}=E[[X-E(X)][Y-E(Y)]]
$$

or

$$
\operatorname{Cov}(X, Y)=\frac{1}{N} \sum_{i=1}^{N}\left[x_{i}-E(X)\right]\left[y_{i}-E(Y)\right]
$$

It measures the linear association between X and Y.

17

Cross-products are positive in I and III, negative in II and IV.

The correlation coefficient for two variables X and Y is a scaled version of covariance: divide through by the product of the standard deviations of the two variables.

$$
\rho_{X Y}=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}
$$

Note that $-1 \leq \rho \leq+1$.

Continuous random variables

Let the random variable $X=$ the number towards which the spinner points when it comes to rest.

To find probabilities, think in terms of fractions of the total measure.

$$
\begin{aligned}
& P(0<X<3)=3 / 12=1 / 4 \\
& P(7<X<9)=2 / 12=1 / 6
\end{aligned}
$$

21

Probability density function or pdf:

$$
f(x)=\frac{d}{d x} F(x)
$$

Derivative of the cdf with respect to x.
Determine the probability of X falling into any given range by taking the integral of the pdf over that interval.

$$
P\left(x_{1}<X<x_{2}\right)=\int_{x_{1}}^{x_{2}} f(x) d x
$$

Gaussian distribution

Central Limit Theorem: If a random variable X represents the summation of numerous independent random factors then, regardless of the specific distribution of the individual factors, X will tend to follow the normal or Gaussian distribution.

General formula for the normal pdf:

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \quad-\infty<x<\infty
$$

The standard normal distribution is obtained by setting $\mu=0$ and $\sigma=1$; its pdf is

$$
f(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} \quad-\infty<x<\infty
$$

Commit to memory:
$P(\mu-2 \sigma<x<\mu+2 \sigma) \approx 0.95$
$P(\mu-3 \sigma<x<\mu+3 \sigma) \approx 0.997$

A compact notation for saying that x is distributed normally with mean μ and variance σ^{2} is $x \sim N\left(\mu, \sigma^{2}\right)$.

