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The simple linear model

Represents the dependent variable, yi, as a linear function of one
independent variable, xi, subject to a random “disturbance” or
“error”, ui.

yi = β0 + β1xi +ui
The error term ui is assumed to have a mean value of zero, a
constant variance, and to be uncorrelated with its own past values
(i.e., it is “white noise”).

The task of estimation is to determine regression coefficients β̂0 and
β̂1, estimates of the unknown parameters β0 and β1 respectively.

The estimated equation will have the form

ŷi = β̂0 + β̂1x
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OLS

The basic technique for determining the coefficients β̂0 and β̂1 is
Ordinary Least Squares (OLS).

Values for the coefficients are chosen to minimize the sum of the
squared estimated errors or residual sum of squares (SSR). The
estimated error associated with each pair of data-values (xi,yi) is
defined as

ûi = yi − ŷi = yi − β̂0 − β̂1xi
We use a different symbol for this estimated error (ûi) as opposed to
the “true” disturbance or error term, (ui). These two coincide only if
β̂0 and β̂1 happen to be exact estimates of the regression parameters
α and β. The estimated errors are also known as residuals .

The SSR may be written as

SSR = Σû2
i = Σ(yi − ŷi)2 = Σ(yi − β̂0 − β̂1xi)2
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Picturing the residuals
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The residual, ûi, is the vertical distance between the actual value of
the dependent variable, yi, and the fitted value, ŷi = β̂0 + β̂1xi.
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Normal Equations

Minimization of SSR is a calculus exercise: find the partial derivatives
of SSR with respect to both β̂0 and β̂1 and set them equal to zero.

This generates two equations (the normal equations of least squares)
in the two unknowns, β̂0 and β̂1. These equations are solved jointly to
yield the estimated coefficients.

∂SSR/∂β̂0 = −2Σ(yi − β̂0 − β̂1xi) = 0 (1)

∂SSR/∂β̂1 = −2Σxi(yi − β̂0 − β̂1xi) = 0 (2)

Equation (1) implies that

Σyi −nβ̂0 − β̂1Σxi = 0

⇒ β̂0 = ȳ − β̂1x̄ (3)

Equation (2) implies that

Σxiyi − β̂0Σxi − β̂1Σx2
i = 0 (4)
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Now substitute for β̂0 in equation (4), using (3). This yields

Σxiyi − (ȳ − β̂1x̄)Σxi − β̂1Σx2
i = 0

⇒ Σxiyi − ȳΣxi − β̂1(Σx2
i − x̄Σxi) = 0

⇒ β̂1 =
(Σxiyi − ȳΣxi)
(Σx2

i − x̄Σxi) (5)

Equations (3) and (4) can now be used to generate the regression
coefficients. First use (5) to find β̂1, then use (3) to find β̂0.
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Goodness of fit

The OLS technique ensures that we find the values of β̂0 and β̂1 which
“fit the sample data best”, in the sense of minimizing the sum of
squared residuals.

There’s no guarantee that β̂0 and β̂1 correspond exactly with the
unknown parameters β0 and β1. No guarantee that the “best fitting”
line fits the data well at all: maybe the data do not even
approximately lie along a straight line relationship. How do we assess
the adequacy of the fitted equation?

• First step: find the residuals. For each x-value in the sample,
compute the fitted value or predicted value of y , using
ŷi = β̂0 + β̂1xi.

• Then subtract each fitted value from the corresponding actual,
observed, value of yi. Squaring and summing these differences
gives the SSR.
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Example of finding residuals

β̂0 = 52.3509 ; β̂1 = 0.1388

data (xi) data (yi) fitted (ŷi) ûi = yi − ŷi û2
i

1065 199.9 200.1 −0.2 0.04

1254 228.0 226.3 1.7 2.89

1300 235.0 232.7 2.3 5.29

1577 285.0 271.2 13.8 190.44

1600 239.0 274.4 −35.4 1253.16

1750 293.0 295.2 −2.2 4.84

1800 285.0 302.1 −17.1 292.41

1870 365.0 311.8 53.2 2830.24

1935 295.0 320.8 −25.8 665.64

1948 290.0 322.6 −32.6 1062.76

2254 385.0 365.1 19.9 396.01

2600 505.0 413.1 91.9 8445.61

2800 425.0 440.9 −15.9 252.81

3000 415.0 468.6 −53.6 2872.96Σ = 0 Σ = 18273.6

= SSR
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Standard error

The magnitude of SSR depends in part on the number of data points.
To allow for this we can divide though by the degrees of freedom,
which is the number of data points minus the number of parameters
to be estimated (2 in the case of a simple regression with intercept).

Let n denote the number of data points (sample size); then the
degrees of freedom, df = n− 2.

The square root of (SSR/df) is the standard error of the regression , σ̂ :

σ̂ =

√
SSR
n− 2

The standard error gives a first handle on how well the fitted equation
fits the sample data. But what is a “big” σ̂ and what is a “small” one
depends on the context. The regression standard error is sensitive to
the units of measurement of the dependent variable.
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R-squared

A more standardized statistic which also gives a measure of the
goodness of fit of the estimated equation is R2.

R2 = 1− SSRΣ(yi − ȳ)2 ≡ 1− SSR
SST

• SSR can be thought of as the “unexplained” variation in the
dependent variable—the variation “left over” once the predictions
of the regression equation are taken into account.

• Σ(yi − ȳ)2 (total sum of squares or SST), represents the total
variation of the dependent variable around its mean value.
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R2 = (1− SSR/SST) is 1 minus the proportion of the variation in yi
that is unexplained.

It shows the proportion of the variation in yi that is accounted for by
the estimated equation. As such, it must be bounded by 0 and 1.

0 ≤ R2 ≤ 1

R2 = 1 is a “perfect score”, obtained only if the data points happen to
lie exactly along a straight line; R2 = 0 is perfectly lousy score,
indicating that xi is absolutely useless as a predictor for yi.
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Adjusted R-squared

Adding a variable to a regression equation cannot raise the SSR; it’s
likely to lower SSR somewhat even if the new variable is not very
relevant.

The adjusted R-squared, R̄2, attaches a small penalty to adding more
variables. If adding a variable raises the R̄2 for a regression, that’s a
better indication that is has improved the model that if it merely
raises the unadjusted R2.

R̄2 = 1− SSR/(n− k− 1)
SST/(n− 1)

= 1− n− 1
n− k− 1

(1− R2)

where k+ 1 represents the number of parameters being estimated (2
in a simple regression).
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To summarize so far

Alongside the estimated regression coefficients β̂0 and β̂1, we might
also examine

• the sum of squared residuals (SSR)

• the regression standard error (σ̂ )

• the R2 value (adjusted or unadjusted)

to judge whether the best-fitting line does in fact fit the data to an
adequate degree.
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Confidence intervals for coefficients

As we saw, a confidence interval provides a means of quantifying the
uncertainty produced by sampling error.

Instead of simply stating “I found a sample mean income of $39,000
and that is my best guess at the population mean, although I know it
is probably wrong”, we can make a statement like: “I found a sample
mean of $39,000, and there is a 95 percent probability that my
estimate is off the true parameter value by no more than $1200.”

Confidence intervals for regression coefficients are constructed in a
similar manner.
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Suppose we’re interested in the slope coefficient, β̂1, of an estimated
equation. Say we came up with β̂1 = .90, using the OLS technique, and
we want to quantify our uncertainty over the true slope parameter,
β1, by drawing up a 95 percent confidence interval for β1.

Provided our sample size is reasonably large, the rule of thumb is the
same as before; the 95 percent confidence interval for β is given by:

β̂1 ± 2 standard errors

Our single best guess at β1 (point estimate ) is simply β̂1, since the
OLS technique yields unbiased estimates of the parameters (actually,
this is not always true, but we’ll postpone consideration of tricky
cases where OLS estimates are biased).
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On the same grounds as before, there is a 95 per chance that our
estimate β̂1 will lie within 2 standard errors of its mean value, β1.

The standard error of β̂1 (written as se(β̂1), and not to be confused
with the standard error of the regression, σ̂ ) is given by the formula:

se(β̂1) =
√

σ̂ 2Σ(xi − x̄)2

• The larger is se(β̂1), the wider will be our confidence interval.

• The larger is σ̂ , the larger will be se(β̂1), and so the wider the
confidence interval for the true slope. Makes sense: in the case of a
poor fit we have high uncertainty over the true slope parameter.

• A high degree of variation of xi makes for a smaller se(β̂1) (tighter
confidence interval). The more xi has varied in our sample, the
better the chance we have of accurately picking up any relationship
that exists between x and y .
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Confidence interval example

Is there really a positive linear relationship between xi and yi? We’ve
obtained β̂1 = .90 and se(β̂1) = .12. The approximate 95 percent
confidence interval for β1 is then

.90± 2(.12) = .90± .24 = .66 to 1.14

Thus we can state, with at least 95 percent confidence, that β1 > 0,
and there is a positive relationship.

If we had obtained se(β̂1) = .61, our interval would have been

.90± 2(.61) = .90± 1.22 = −.32 to 2.12

In this case the interval straddles zero, and we cannot be confident (at
the 95 percent level) that there exists a positive relationship. �
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