Chapter 4
Mean-field approximations for homogeneous
networks

As seen in Chapters 2 and 3, because of the high-dimensionality of exact mathemat-
ical models describing spreading processes on networks, the models are often nei-
ther tractable nor numerically solvable for networks of realistic size. We can avoid
this fundamental difficulty by refocusing our attention on expected population-scale
quantities, such as the expected prevalence or the expected number of edges where
one node is susceptible while the other is infectious. This opens up a range of pos-
sibilities to formulate so-called mean-field models (i.e. typically low-dimensional
ODEs or PDEs) that are widespread in the physics and mathematical biology
literature. These are used to approximate stochastic processes, with the poten-
tial to be exact in the large system or “thermodynamic” limit, see (for example,
[151, 166, 167, 243] and the literature overview in Section 4.8).

Figure 4.1 shows the outcomes of many stochastic realisations of SIS and SIR
epidemics on an Erd6s—Rényi network with average degree (K) = 30. The realisa-
tions form the cloud plot, which highlights the stochasticity of the spreading pro-
cesses. The same figure also shows the average prevalence based on all realisations
together with predictions of the simplest mean-field approximations, system (4.8)
for the SIS case and (4.9) for the SIR case. The derivation and analysis of mean-field
models capable of describing such average behaviours is the focus of a significant
part of this book. Many such models have been and can be derived. The simplest
models typically require stronger assumptions. We set out to present these models in
a unified framework, highlighting the motivation and applicability of these models.
Some of these models may be network- or process-specific and only perform well
ior certain networks or processes, e.g. giving good results for SIR dynamics but not
or SIS.

: The typical recipe for deriving a mean-field model is to first identify some quan-
lities of practical interest and derive equations for how the average value of these
quantities change in time. Often, these equations rely on new variables. We iterate
thf’— process, deriving equations for the new variables. Occasionally, this process ter-
Minates quickly, yielding a small, self-consistent system of equations. Other times,
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Fig. 4.1: The time dependence of the expected number of ir}fecFed nodes
Erdés-Rényi random graph from 100 agent-based stochastic S.lmlllations
curves) and from the mean-field system closed at the !evel of pairs (black T,
curves) for (a) an SIS epidemic and (b) an SIR epidemic. The averages of the i,
ulations are shown with black solid curves. The parameter values are N — It
(K) = 30, recovery rate Y = 1 and infection rate T = 1/15. We note that 4 e
number of nodes increases, the spread of simulation around the mean decreases

for

the iteration would continue until the full system size is reached; then, we typicilj
“close” the model by approximating the newly introduced variables in terms of -
ready existing ones. There is some “art” in the process: sometimes, there are optiors
for what variables or approximations to use, and the choice determines the accuray
and complexity of the model.

This chapter and the following chapter systematically develop mean-field moé
els, starting with the most basic ones that usually work for simpler networks, 2
regular and Erd6s-Rényi, and moving towards the more sophisticated models (!
can handle networks with high degree heterogeneity (which are the focus of Cha
ter 5), preferential mixing or clustering. We present results concerning steady st
stability and model consistency for many mean-field models to aid the readers'
derstanding of this important area. We note that these models have been extent®
lgaceomnbor more complex structural properties of networks, such as househols
and networks with"arbitrary subgraph distribution as well as directed or Weigh®

petworks. Thgse will not be dealt with in the book, but relevant references ar g
in the concluding section of this chapter.

4.1 Exact, unclosed models
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4.1 Exacts unclosed models .

Je of status A and to a '_“’d(_: of status C, is denoted by [ABC|(t). A formal
fnition of these quantities is given in the next subsection. Note that there is an
.e it direction, SO each edge is counted twice. An edge from a susceptible node
::)nan nfected node is counted towards [S7], but it will also be counted towards [15].

4.1.1 The yariables of mean-field models: population-level counts

To define the population-level counts, we start from the random variable Xi(t) that

getermines the type of node i at time 7, e.g. Xi(r) = I if node i is infected at time .
The above expected values can be defined formally as

N
[A](r) = ; P(Xi(r) = 4),

where A € {S,I,R}. The expected number of edges in a given status can be defined
similarly as follows:

N N
[AB](t) = 2{ ZlgijP(Xi(t) =A,Xj(t) = B),
i=1j=

thA,B € {S,I,R}. It is important to note here that edges connecting two suscep-
le nodes contribute twice to the [SS] count, since the pairs (i, j) and (j,{) are both
counted in the [SS] class when nodes i and j are susceptible. As an example, con-
sider the graph with two infected and two susceptible nodes, shown in Fig. 4.2. The
nodes are labelled clockwise from the top left, with nodes 1 and 2 being infected.
Let us for a moment assume that this is a snapshot of a given realisation of the epi-
demic. We determine the different counts denoting them also by [-], although these
are not expectations. In the situation given in Fig.4.2, we have [I] =2 and [S] = 2.
Counting the pairs, we find that (3,2), (4,2) and (4,1) are of SI type and, hence
I] = 3. The II pairs are (1,2) and (2,1); therefore, (/1] = 2. In a similar way, we
get [IS] = 3 and [SS] = 2; the total number of pairs is 10. Let us finally turn to the
counting of triples. The number of ABC triples is defined in general as

[ABC](r) = ﬁ ﬁ’: i gijgiP(Xi(t) = A, Xj(t) = B,Xy(t) = C),
i=1 j=1k=1

With A,B,C ¢ {S,1,R}. Using this definition, the number of SSI triples in the graph
Shown in Fig 4.2 is [$S1] = 3, namely the SSI triples are (3,4,1), (3,4,2) and
:f 4,3,2). The number of other triples can be similarly obtained as [ISS] =3, [/15] =3,
=3, [ISI) = 2 and [SIS] = 2; there are 16 triples altogether.
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Fig. 4.2: Counting the number of pairs and triP

me conservation relations, Ty,
that P(Xi(t) = S) +P(X;(1) <
eptible or infected. Tp;

The expected values introduced above obey S(f)act
simplest one, for the SIS dynamics, is based on the hes SUSC
I)=1foranyi=1,2,...,N, since any node is €

immediately implies that
S+ @O =N

for any time instant #. For the SIR epidemic, the correquﬂd{ngbequation is [Sl(t) +
[1](¢) + [R](z) = N. The conservation relation for the pairs 1s anld on the simple
fact that for the SIS epidemic, a pair can be in one of the following four statuses:

SS, SI, IS or II. Hence, P(X;(t) = S X(r) _—:.S) +I"(X,-(t) =8,X;(t)=1I) +P(X(1) <
1,X(t) = S) +P(Xi(t) = 1,X;(?) =) =1, implying
N N

(SS](r) + [ST)(¢) + (181 () + (1) (8) = 2,

8ij:— Nn',
=1j=1

where n = (k) is the average degree defined in Section 1.2.2. We note that n is used
to denote the average degree in this chapter for the sake of brevity and to follow
the widely used notation of pairwise models. The definition of pairs immediately
implies that [S1] = [IS]; hence, the above relation can be formulated as

[SS](z) +2[S1)(t) + [1}(¢) = Nn.
Similar arguments lead to further pair conservation relations in the SIS case, namely

[SS)(1) + [S11(r) = ns(D)[S1(2),  [STN(2) + (1)) = ma (1) ) (0),

where ng(t) and ny(t) denote the average degree of susceptible and infected nodeﬁ»
respectively. The pair conservation relations in the SIR case can be formulated simk-
larly. Returning to the SIS case, triple conservation relations can also be formulated
The relation

[SST)(2) + [IS1](£) = (ns(t) — 1)[SI](#)

will play an important role. Besides deriving it formally from the triple de
one can argue as follows to prove the relation. Taking an arbitrary ST edge: ing
node has (nsg — 1) further neighbours; hence, the total number of triples (':Onuuﬂ h:‘
an SI pair is (ns —1)[SI]. On the other hand, the same quantity can be obtain® aso ‘|
sum of those triples that contain an SI pair, namely [SSI]+ [IS] ] Ina similat w;f(,' i
can derive further triple conservation relations, for example, S|+ i

(ns(r) = 1)[SS](r) and [SIS](t) + [11S](¢) = (ns(£) — 1)[IS](2)-

finitio™
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4.1.2 Exact differential equations for the singles and pairs

We use heuristic arguments here to de?rive exact differential equations for the ex-
pected number of nodes and_ edges in given statuses. Later in this chapter, we derive
these from the master equatlon§, system (2.6), consisting of 2V equations governing
he full SIS dynamics. We sacrifice having information about the precise statuses of
each node to get a much smaller system of equations for the expected numbers of
nodes in each status. The main parameters of the epidemic processes are the infec-
tion and recovery rates denoted by 7 and ¥, respectively.

Theorem 4.1 For the SIS epidemic on an arbitrary network (undirected and not
weighted), the expected values [S] and (1] satisfy the following system

(8] = v — =[s1], (4.1a)
(1] = [S1] — ¥]I). (4.1b)

The proof of the theorem is presented in Section 4.6. The differential equations
can be obtained heuristically following the top two flow diagrams in Fig.4.3. The
rate of transmission to S nodes is 7 times the number of SI edges. The rate of re-
covery of infectious nodes back into a susceptible status is y times the number of
infectious nodes. Thus, the rate of change of [S] is y[I] — 7[SI]. We similarly find
the [/] equation. For an SIR epidemic, the I nodes do not become susceptible again;
instead their status changes to R. The equations take a different form.

Theorem 4.2 For the SIR epidemic on an arbitrary network (undirected and not
weighted), the expected values [S), [I] and [R) satisfy the following system

[S] = —[S1], (4.2a)
[N = z[S1] — 1), (4.2b)
[R] = 7|1]. (4.2¢)

We note that the variables in the SIS and SIR systems thus far are not independent
cause of conservation relations, taking the form [S] + [I] = N in the SIS case
g [S] +I 1+ [R] = N in the SIR case. Hence, for the exact systems one of the
Eq:sallons could be omitted in both cases. However, for systems with approximate
4 ll:]eresh’ tbe conservation laws do not hold automatically; their validity may deperd
: arc olce of the closure. Therefore, differential equations for all sm_gles‘ and pairs
foll(:) needed FO get a self-contained system will be considered. This will always
reduce J]ved by investigating whether conservation laws hold as they enable us to
' System,

aﬂ(;\ Isrig(lilma[ed in Fig. 4.3, the dynamics of the expected num.ber of S nodes ([S])
SYstem ). ie. singles, depends on the number of SI pairs ([SID; hence, the
Mmpg epen'ds on pairs, for which we need additional equations. Similarly, the

i o Pairs depends on the number of triples. For example, the number of SS

- Pairg g : ;
ECreases dye to infection from outside the pair, i.e. it changes proportionally
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flux between compartments of singles (top) and

compartments of pairs (bottom). The SIS case is on the left and SIR on the right.In
the compartments of pairs, solid lines denote infections coming from within the par
(with a rate depending on a pair) or from outside the pair (with a rate dependingont
triple), and the wiggle lines denote a recovery. The colour indicates the status of the
“first” node in the edge. Symmetry allows us to conclude that some of the variables
(lighter shade, on the right of each diagram) must equal the symmetric version €2
[RS] = [SR]), so we do not need to directly calculate both.

Fig. 4.3: Flow diagrams showing the

to the number of SSI triples ([SSI]) with rate 27[SSI] (recall the SS pair 18 cout
twice). In an SI or IS pair, the infected node can recover with rate 7; hencé: in
case of an SIS epidemic, the number of SS pairs increases at rate y((S1] +VSD:
Since the numbers of SI and IS pairs are equal, we can use 2Y{SI]. Extending l;
simple heuristic reasoning to SI and II pairs and by accounting for all with”
outside-pair transitions, we arrive at the following theorems.

Thf:orem 4.3 For the SIS epidemic on an arbitrary network (undir ected ‘;Z;wiﬂg
weighted) the expected values of [S), (1], [SI), [II), and [SS] satisfy the f

0!

system of differential equations
. (4.33]
181 =y11] 7ls), G
1] = 2ls1] i1, G4

(1) = y([11) - (1) + =([SS1] — [181] - [ST));
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[s'§1 = 2y[S1) - 27(SS1), (4.3d)
(1) = —29[11) + 2%([ISI) + [S1)). (4.3¢)

is result can also be derived directly from the master equations, system (2.6)

(see [299)): '
As before, for SIR epidemics the I nodes do not become susceptible again; hence,

he terms due to recovery show up in different equations. We find the following.

Theorem 4.4 For the SIR epidemic on an arbitrary network (undirected and not
weighted), the expected values of [S), [I), [SI) and [SS] satisfy the following system
of differential equations:

[8] = —[s1], (4.42)
(1 = [S1) - 7]1), (4.4b)
[R] = v11), (4.4c)
[S1) = —y[S1] + T((SSI) — [ISI) — [ST)), (4.4d)
: (8] = —27[SS1), (4.4¢)

' The differential equations for [I1], [SR], [IR] and [RR] can be formulated similarly,
but we leave them out because the other variables do not depend on them and they

 are not generally of epidemiological interest.
w-

}-Closures at the pair and triple level and the resulting models

W present the ideas leading to closures of the systems above.

Closures

ow assume that the network is homogeneous: each node has the same de-
There are [1] infected nodes, making up proportion [I]/N of the population.
g that infected nodes are distributed randomly, an average susceptible node
;;'l[f] /N infected neighbours. This assumption makes the closed system inexact
ce infected nodes are more likely to be in contact with other infected nodes be-
se of how infection propagates. Using this assumption, however, the total number

edges is approximated by
n
~ —|[S][1]- 4.5)
(51} ~ 18I0
ure since it replaces a term for a pair to
the dependence on higher order
d also for the SIR epidemic

relation is referred to as a pair clos
2 “closed” system of equations. Using this,
ts in system (4.1) is avoided. This closure 15 us

T T P I L AT
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i 2). We note that sometimes o s u§ed instead of A58
:;;Z:ilﬁrgna(:uiieptible node, the remaining population (fontains on]A)’, Ne\cluse iy
To improve our accuracy, we need a better accounting of the facy that inofdeg_
nodes are not uniformly distributed. We take system (4.3) and 'CIOSe it by suec-[ed
an algebraic expression for [SS7] and for [£S1] in terms of singles ang . "
derive this, we start again with a susceptlbl'e node and detemyne what o
of the edges starting from this node lead to mfectec? or susceptible node. eruon
number of edges starting from susceptible nodes is n[S]. The total numpg, ol?lal
edges is [SI]; hence, a proportion [81]/n[S] of the edges starting from SUScepﬁbSl
nodes lead to infected nodes. Similarly, the ratio of edges leading to SUsce tible
nodes is [SS]/n[S]. Thus, if we choose a susceptible node u and two “eighll))ouk
v and w (arbitrarily calling v “first”), the probability that v is susceptipje
infected is [SS)[S1]/n2[S]%. There are n(n — 1) ways to choose v and w, Thys, e
expected number of SSI triples is [S]n(n — 1)[SS][S1]/ n?[S]? = (p= 1)[Ss] Is1) s
Assuming that these are uniformly distributed, we conclude that :

n—1[8S][s1]

ang

Similar analysis leads to the closure
R [SI]?
(ISI] = [—ﬁ @

As before, this is only an approximation: for an SIS epidemic, a previously infected,
but recently recovered node will tend to have more infected neighbours than other
susceptible nodes. Thus, the distribution of infected neighbours to susceptible nodes
is not truly uniform. Further, for an SIR epidemic, if there are many short cycles,
then one neighbour of a susceptible node u being infected is correlated with other
neighbours of u being infected, so again the distribution is not uniform. If there are
few short cycles, we will see that this closure is accurate for SIR epidemics.

4.2.2 Closed systems

We now write out the closed systems. We first apply closure (4.5) to system (‘.“)'
Since the closure is only approximate, the variables in the closed system are, strict)
speaking, different from the original ones, so we use a different notation: 181y
(1] are the approximations given by the closed system.
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The subscript /™" refers to “first” since this can be considered as the first approx-

ation when the expected number of pairs is expressed in terms of the expected
umber of singles. The system and variables resulting by applying the triple closure
will be referred to as the second approximation. In the case of the SIR epidemic, the
plest closed system takes the form below.

Itis worth noting that these closures lead to the usual SIS and SIR disease models.
hese equations are an approximation for epidemics on static networks. However,
we consider an alternate problem, in which nodes select a new set of random
eighbours at cach moment, our assumption that [SI] = §[S][/] is correct. So these
Juations are correct if we consider a system in which nodes are quickly changing
eir neighbours. Thus, the difference between these closed equations and the full
uations is due to the duration of partnerships creating correlations between the
us of neighbouring nodes.

‘We now apply the triple closures (4.6) and (4.7) to system (4.3). This is the
cond approximation, so we use the notation [S]g, [/s, [S1]s, [SS]s and [I1]5, yielding
e System below,

‘homogeneous pair

18], = i, - r[SI}, |
(], = e[St~y

SETCTNC T SR
n '

1, = y((an)s - (1)) + ¢ §

Eiso o on=1[81,[s5],
‘l ly = 29(S1), 2 S
.. ’ N — 2 | ‘
’.l”Lv = 21, + 21-’—,1-1 %]f +21[81].

G P

s R G RN

W \ " e
1 :l“"“ show later that this system conserves certain quantities; hence, we do not
of the differential equations to determine the number of susceptible and in-
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ext section, it will be shown that two differential equationg -
all the unknown functions, because there is one conservaio,

fected nodes. In the n

enough to determine
relation for singles and two for pairs.

For SIR epidemics, the same ¢
following.

losures are applied to system (4.4), leading to the

The system could be augmented by further equations if one had a reason to be

interested in the values of pairs such as [I1], [SR], [IR] or [RR].
When the closed systems are solved, initial conditions are needed for all model

variables. Typically, the initial number of susceptible, infected and recovered nodes
are given; these can be used as initial conditions in the mean-field models at single
level. In the case of pairwise models, further initial conditions are needed for the
initial number of pairs. Assuming that the different types of nodes are distributed
randomly initially, the initial condition for AB pairs can be given as

[ABJo = < [AlolBlo,
where [A]o and [B]o denote the initial number of nodes of status A and B, 1esP
tively. Obviously, this is not the only choice for the initial conditions of the_pa“s'
For example, correlations in the initial position of infected nodes can be built 17
these will dampen in time.

4.2.3 Clustered pairwise model

. lus‘
Th'e closures ?bove fail to describe clustered graphs in a satisfactory way; eg f
tering coefficient of a network is simply the ratio of triangles t0 triples ¢ G of (he
and closed). More formally, it can be defined by using the adjacency matriX {ric and
network. Let the network be undirected without weights; that is, G i syn;vme N\ dii

cach entry is 0 or 1. For a matrix A, we will use the notations [|A[ = &i=! e,djg;
and Tr(A) = ¥V | a;; for the trace of the matrix. The number of pairs: L
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our terminology; is [|G]|. It can be Sh(3>wn that the number of triples is I1G?|| - Tr(G2)
and the number of triangles is Tr(G”). The clustering coefficient of the network js
defined as the ratio of the number of triangles and triples:

Tr(G%)

= Te-Tey:

 [nChapter 3, we have shown that the bottom-up approach can handle certain classes
~ of clustered networks, but the number of resulting equations can be forbidding.
ence, it seems more natural to consider mean-field and percolation models to cap-

¢ this extra degree of complexity in the structure of the network. Below, we give

succinct overview of some extensions. In the spirit of this chapter, we start with
extensions of the pairwise model. Here, we present two closures that attempt to
capture clustering within the framework of pairwise models. The classical closure
or clustered graphs was first introduced in [166, 256], the idea of which will be

resented now. Take an SI edge and consider the (n—1) other neighbours of the
i ceptible node. The average number of those neighbours that are not connected
o the infected node is (1 — ¢)(n — 1), while the average number of the neighbours
onnected to it is ¢(n — 1). For those that are not connected to the I node, we can
~ apply the original idea of closure, i.e. we can say that the proportion of S neighbours
.~ i5[SS]/n[S], and hence the number of SSI triples given by these neighbours is

Bl

710 = 9)n= 1)y = (1- )= 50

By I8l

Consider now those neighbours of the S node that are connected to the I node as
. well. The proportion of susceptible nodes among these neighbours is scaled with
~ the correlation Cg; = %’ ﬂ%ﬁ, leading to

[SS]CI—(P

(ST (n — I)WS] s1,=

n—1[SS|[SI|N [sI]
[S] n (Sl

Thus, adding the above expressions we approximate the total number of SSI triples
fanetwork with clustering coefficient ¢ as

., n—1[SS][s1] N [S1

By introducing Cyr in the same manner, the number of ISI triples can be similarly
~ 3Pproximateq a5

INIES

n—11sI LAY
Py <(1—¢)+¢n [1]2>
- Miwitiyeyy,

. . w.
- Cerpgi the scaling factors or correlations measure the prOpenS}ty of nodes ;g}
‘ domlm Matuses 1o be more or less likely to be neighbours than if they were r -
Y distributed ip the network. The performance of these closure relations ¢



4 Mean-field approximations for homogeneous e,
Workg

128
ations. However, there is a theoreticy ;

systems given by these relations do nollssue
level of pairs. That is, even if [SS] + s 1 =Drc.
ons fail later if the closures are used “:‘[S]

- Lhe

dified scaling factor instead of the Corre]
-

comparison (o simul

be investigated by
amely, the closed

concerning them, n
serve the conservation relations at the

and [SI)+[IT] =n [1] initially, these equati
discrepancies can be fixed by using a mo
tion Cgz. In [149], the scaling factor

Car

Bk e
psisCst + PrisCH

is introduced, where pa(s = J;?[S% for A € {S,1}. This yields the closure approximatig,
n[S|I][A]] )

n=1[ASISH (| _ g4 e
e (1- 9+ G+ ST AT

(ASI

Applying these closure relations in system (4.3), we obtain a closed clustereg
pairwise model for SIS epidemic dynamics. Similarly, the closures can be used i
system (4.4) to get a clustered pairwise model for SIR epidemic dynamics. Note
that system (4.4) must be augmented by an equation for [11] in order to apply this

closure.
Other developments in this area include the continuation of the pairwise equa
tions for triples, which now will include

tions beyond pairs by writing down equa
quadruples [152]. The complexity grows since triples themselves can be open or
closed, and quadruples can be of the following types:

T T e R

’ I

The network structure is accounted for by writing down closures separately for each
quadruple type, hoping to more accurately capture the local structure. The perfor
mance of this model seems to be mildly better than that of the simple pairwise
however the exploration of this model is far from trivial as it relies on a good
param.etrisation of the network model, where quadruples can be controlled well
The dimensionality of such a model increases and therefore the insight gained !
be less compared to that gained from simpler models.

C_lus{ering can have a significant impact on the epidemic t
demic size or endemic state. For example, it is widely accepted that the value of
transmission rate needed to generate an epidemic is larger for networks which &
c_lustered when compared to an equivalent network with the same degree dist?
ltlor(; but no clustering. Where neighbours of a given node are likely to be connf?del
\::stic;()[ llgg?ll ggf)];lu;r.l? f:]_susceptlbles where transmission events ar effecnvey

. . i g

a pgfgg&l:?oﬂ]fhmos[ significant progress in this direction has been made bY o

B o oory approach [117, 213, 237]. However, the analyticd” . "y, s
s requires the consideration of specific classes of networks

hreshold, final &
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case, the networks usually are built based on allocating a number of triangle corners
or hyperstubs to each node according to some degree distribution, which later on,
with some probability, will either decompose into two classical edges or will go on
to form triangles. This construction allowed the authors to use the probability gen-
erating function machinery coupled with percolation theory (see Chapter 6). This
then led to finding analytical expressions for the size of the giant component and the
location of the percolation threshold.

Several further developments of such models have been proposed. First of all,
Karrer and Newman [164] have extended the network models to take into account
arbitrary distributions of subgraphs and investigate the size of the giant compo-
nent, the location of the phase transition at which the giant component appears,
and percolation properties for both site and bond percolation on networks gener-
ated by the model. On the other hand, two other significant developments can be
noted. In [318], the authors have successfully extended the edge-based compart-
mental model (EBCM) framework of Chapter 6 to provide a compact mean-field
model that gives excellent agreement with simulations and accurately describes the
temporal evolution of the disease. Finally, combining the results in [164] and [318],
Ritchie et al. [265] extended the EBCM framework further to model SIR epidemics
on graphs with arbitrary subgraph distributions. This is also a mean-field model that
describes the temporal evolution of the epidemic and provides a strong framework
for modelling SIR disease spread on clustered networks.

4.3 Analysis of the closed systems

4.3.1 SIS homogeneous mean-field equations at the single level

Consider first the SIS system closed at the level of pairs, i.e. system (4.8). Note
that adding the two equations, we get that [S](¢) -+ [I]#(¢) is constant in time. If the
initial condition satisfies [S](0) + [/];(0) = N, then by using [S];(t) =N — [1]4(¢),
the system can be reduced to the single equation

i1 = =5 (V= Ul =1l

We can analyse the behaviour of this dynamical system. It has a disease-free steady
state [I]j.f = 0 and another fixed point at [I]jl = N(1 —-L). This second point is

nt
only biologically meaningful if it is positive, i.e. ¥ < nt, in which case it gives an
endemic equilibrium. Differentiating the right-hand side of the differential equation
“{ilh respect to [f]f, i.e. linearising the right-hand side, one obtains that for y > nt the
disease-free state is stable, while for v < nt the endemic state is stable. Thus at y =
- 1T a transcritical bifurcation occurs, the disease-free steady state loses its stability,
- and the stable endemic steady state appears. Moreover, these stabilities are global
for{V > [l]z > 0. For y > nr, the right-hand side is negative, i.e. I]; is decreasing
!N time and converges to zero, starting from any meaningful initial condition. In




