MTH 351/651
Homework #8

Due Date: November 11, 2022

1 Problems for Everyone

7 @For the following conservative systems find all the equilibrium points and classify them, find

a conserved quantity, sketch the phase portrait, find explicit formulas for any homoclinic or
heteroclinic orbits.

a) & =2 -z,
(a)

(b) & =a -2

2. The relativistic equation for the orbit of a planet around the sun is

d?*u " e ?
— 4+ u=a+su’,
d6?
where u = 1/r and r, 8 are polar coordinates of the planet in its plane of motion. The parameter
a is positive and u? is Einstein's correction. Here ¢ is a very small positive number.
" - ; A . o — d
(a) Rewrite the system in the (u,v) phase plane, where v = .
{(b) Find all the equilibriuin points of the system.

(c) Show that one of the equilibrium is a center in the (u.v) phase plane, according to the
linearization. Is it a nonlinear center?

(d) Show that the equilibrium point found in (c) corresponds to a circular planetary orbit.
@The Duffing oscillator is described by the following differential equation
F+x+ext=0.
(a) Show that this system has a nonlinear center at the origin for £ > 0.

(b) If ¢ < 0, show that all trajectories near the origin are closed. What about trajectories
that are far from the origin?

@ For each of the following systems, locate the fixed points and calculate the index.
(a) &= :L.2’ y=y
(b) e =y -z, y=a?
(C) &= y3) y==c
(d) g=ay,g=2+y

l @ A closed orbit in the phase plane encircles S saddles, N nodes, F spirals, and C centers, all
of the usual type. Show that

N+F+C=1+8.



A smooth vector field on the phase plane is known to have exactly three closed orbits. Two
l of the cycles, say C) and Cs, lie inside the third cycle C3. However, C} does not lie inside Cs,
nor vice-versa.
(a) Sketch the arrangement of the three cycles.
{b) Show that there must be at least one fixed point in the region bounded by Ci, Cz, and
Cs.

7. Consider a smooth vector field £ = f(z,y), ¥ = g(z,y) on the plane, and let C be a simple
closed curve that does not pass through any fixed points. As usual, let ¢ = tan™!(y/z).
(a) Show that d¢ = (fdg — gdf)/(f* + g%).
(b) Derive the following integral formula for the index

1. - > [ fdg—gdf
¢ 2r Jo FP+9%

8. Consider the following system of differential equations

&=z —y—z(z? + 55°),
y=z+y—y(z®+3%).

(a) Classify the fixed point at the origin.
(b) Rewrite the system in polar coordinates.

{(¢) Determine the maximum radius centered at the origin such that all trajectories have a
radially outward component on it.

{d) Determine the circle of minimum radius centered at the origin such that all trajectories
have a radially inward component on it.

(e) Prove that the system has a limit cycle.

@ Consider the system
2 DA W
¥ =y(1 - 42® — y?) + 2z(1 + z).
(a) Show that the origin is an unstable fixed point.

(b) By considering V, where V = (1 — 4z2 — ?)?, show that all trajectories approach the
ellipse 422 + 3% = 1 as t — 0. :
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