MTH 381 Homework #4

Due Date: September 23, 2022

1 Theory Problems

1. pg. 38-39, #13, #14, #16, #21

2 Applied Problems

- 1. pg. 38, #9
- 2. There are many equivalent definitions of measurability of real-valued functions on a measure space. Prove that each of the following properties implies that f is measurable, and that a measurable $f: X \mapsto \mathbb{R}$ satisfies each condition.
 - (a) For every $\alpha \in \mathbb{R}$, $\{x : f(x) \leq \alpha\} \in \mathcal{B}$.
 - (b) For every $\alpha \in \mathbb{R}$, $\{x : f(x) > \alpha\} \in \mathcal{B}$.
 - (c) For every $\alpha \in \mathbb{R}$, $\{x : f(x) \ge \alpha\} \in \mathcal{B}$.
 - (d) For every interval $(a, b) \subset \mathbb{R}$, $\{x : f(x) \in (a, b)\} \in \mathcal{B}$.
- 3. The set

$$\mathbb{R}_{\text{ex}} = \mathbb{R} \cup \{-\infty, \infty\} = [-\infty, \infty]$$

is called the extended real numbers. It is subject to the following rules of arithmetic:

- (a) if $a \in \mathbb{R}$ then $a \pm \infty = \pm \infty$,
- (b) if a > 0, then $a \times \pm \infty = \pm \infty$,
- (c) $0 \times \pm \infty = 0$,
- (d) $\infty \infty$ is undefined. If (X, \mathcal{B}) is a measurable space.

A function $f: X \mapsto \mathbb{R}_{ex}$ is said to be **measurable** if the set $\{t: f(t) < \alpha\}$ belongs to \mathcal{B} for each $\alpha \in \mathbb{R}$.

Let $f: X \mapsto \mathbb{R}_{ex}$ be measurable. Show that the sets $f^{-1}(\infty)$ and $f^{-1}(-\infty)$ are measurable.

- 4. Let X be a set and let $B_1, \ldots B_N$ be disjoint sets whose union is X. Let β be the smallest σ -algebra containing all B_j .
 - (a) Describe β by listing all the sets it contains.
 - (b) Describe all measurable functions as explicitly as possible.