MTH 381
Homework #6

Due Date: October 21, 2022

Theory Problems

. pg. 84-85: #1, #3, #9, #15.

. Let f: R+ R be a positive Lebesgue measurable function. Prove that
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. Consider a family {z,, o} of real numbers indexed by n € N and o € A. Prove that

sup (Hm inf l’n,a) < lim inf (sup $n7a> .
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Applied Problems

. pg. 84-85: #2, #8, #13, #14.
. Prove or disprove: if

[ r@de < o
then lim f(z) =0.
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. Let f,, > 0 be measurable. Prove that
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. Prove that
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and use this to deduce that
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. Find, with proof, a series expansion for the definite integral
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where a,b > 0. Hint: Look up the geometric series, i.e. the Taylor series for 1/(1 — z), and
think about how to use monotone convergence theorem.



