Quiz 8

Analysis

April 6, 2018

This is a group assignment. You are encouraged to work together. You can use the board and talk to each other. However, you cannot use the Internet! Jessi is a fantastic resource. Feel free to ask her questions or ask for hints. The point of this assignment is to provide an introduction to discrete dynamical systems.

A discrete dynamical system on $D \subseteq \mathbb{R}$ is relationship between iterates $x_n \in D$ given by

$$x_{n+1} = f(x_n),$$

where $f:D\mapsto D$ is a function. Another commonly used terminology is an iterated map. Some standard definitions in this field are the following:

• The orbit $\gamma(x_0)$ of a point x_0 is a set defined by:

$$\gamma(x_0) = \{x_n : x_n = f(x_{n-1})\}.$$

• A period k orbit is a an orbit with cardinality k:

$$\gamma(x_0) = \{x_0, x_1, \dots, x_{k-1}\}.$$

- x* is a fixed point if x* = f(x*).
- A fixed point x* is locally stable if there exists an open interval I ⊂ D containing x* such that for all x₀ ∈ I, lim_{n→∞} f(x_n) = x*.
- A fixed point x^* is globally stable if for all $x_0 \in D$, $\lim_{n\to\infty} f(x_n) = x^*$.
- A fixed point x* is unstable if it is not locally stable.
- 1. If x^* is a fixed point of f, what is $\gamma(x^*)$?

$$8(x^*)=\{x^*\}$$

such that to is a fixed point of g

2. If $\gamma(x_0)$ is a period 2 orbit of f, find a function g for which γ is a fixed point of

Let
$$g = f \circ f$$
; Then,
 $g(x_0) = f(f(x_0)) = f(x_0) = x_0$.

3. If x^* is a fixed point of f, prove that if $|f'(x^*)| < 1$, then x^* is locally stable. Hint: This is a contraction mapping type argument.

By the mean value theorem it follows that
$$|X_n - X^*| = |f(X_{n-1}) - f(X^*)| = |f'(C)| |X_{n-1} - X^*|$$

If $|f'(X^*)| \times 1$, it follows from continuity that there exists I containing X^* such that for all $C \in I$, $|f'(C)| < 1$. Therefore on I , f is a contraction which proves stability,

4. Find and classify the fixed points as stable or unstable for the following iterated map on R:

$$x_{n+1} = \frac{3}{2}x_n(1 - x_n).$$
Fixed points:
$$X = 0, \quad 1 = \frac{3}{2}(1 - x)$$

$$\Rightarrow x = \frac{1}{3}$$

$$f'(x) = \frac{3}{2} - 3x$$

$$f'(0) = \frac{3}{2}, f'(\frac{1}{3}) = \frac{1}{2}$$

O is unstable
// is stable.

a making health is all all that he was

5. Come up with a definition for what it means for a period k orbit to be locally stable. **Hint:** Thinking of compositions of f might be useful.

6. Suppose $\gamma(x_0)$ is a period k orbit. Prove that $\gamma(x_0)$ is locally stable if

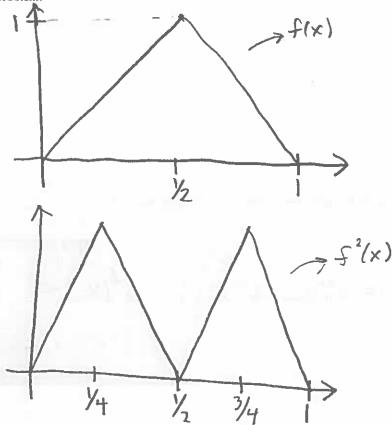
$$\prod_{i=0}^{k-1} |f'(x_i)| < 1.$$

$$\frac{d}{dx} f^{k}(x) = f'(x_{k-1}) \cdot f'(x_{k-2}) \cdot - f'(x_{o}) < 1$$

7. Completely analyze the following iterated map on [0,1]:

$$x_{n+1} = \begin{cases} 2x_n & \text{if } 0 \le x_n \le \frac{1}{2} \\ 2 - 2x_n & \text{if } \frac{1}{2} \le x_n \le 1 \end{cases},$$

i.e. determine the existence and stability of any fixed points or periodic orbits. Is there an attracting set for this problem? If so, what is it? **Hint:** Drawing f and its compositions could be very useful for this problem.



All fixed points and periodic orbits are unstable. Attracting set is a topological Contor set.