MST 205 Name (Print): k £y
Spring 2022 /
Exam #2

03/16/22

The following rules apply:

e If you use a “fundamental theorem” you )
must indicate this and explain why the theorem Problem | Points | Score
may be applied. ) 10

¢ Organize your work, in a reasonably neat and
coherent way, in the space provided. Work scat- 2 15
tered all over the page without a clear ordering
will receive very little credit. 3 15

e Short answer questions: Questions labeled as 4 10
“Short Answer” can be answered by simply writ-
ing an equation or a sentence or appropriately 5 10
drawing a figure. No calculations are necessary or
expected for these problems. 6 15

e Unless the question is specified as short an-
swer, mysterious or unsupported answers 7 15
might not receive full credit. An incorrect
answer supported by substantially correct calcu- 8 10
lations and explanations might still receive partial
credit. Total: 100

Do not write in the table to the right.
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1. (10 points) (Short Answer) Determine if the following statement is correct {C) or incorrect
(I). Just circle C or I. No need to show any work. In order for a statement to be correct it
must be true in all cases.

In these problems, F(—1,1) denotes the vector space of continuous functions defined on (-1,1)
with the standard operations of addition and multiplication.

Hint: If the answer to these questions does not come quickly just move on and come back
later.

@ I The set of all pairs of real numbers of the form (0,y) with the standard opera-
tions of addition and multiplication is a subspace of R2.

I The set of all pairs of real numbers of the form (z, —z) with the standard
operations of addition and multiplication is a subspace of R2.

C @ The set of all pairs of real numbers of the form (z,2?) with the standard oper-
ations of addition and multiplication is a subspace of R2,

C @ The set of functions f(x) such that f(z) > 0 for all = is a subspace of F(-1,1).
@ I The set of functions f(z) such that f(—1) = f(1) is a subspace of F(—1,1).
@ I The set of functions f(z) such that f_ll f(z)dz = 0 is a subspace of F(—1,1).

@ I If Ais n x n matrix satisfying det(A) # 0 then the dimension of CS(A)) is
equal to n.

C If A is n X n matrix satisfying det{A) # 0 then the dimension of NS(A) is not
equal to 0.

@ I If Ais an m x n matrix with m > n, then the rows of A are linearly dependent.

C @ The set of quadratic polynomials with no zeros is a subspace of P,.
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2. (15 points)

(a) (5 points) Let vy,...,v, be vectors in a vector space V. Write down what it means for
{v1,...,Vn} to form a linearly independent set.

T"\f— an\/ Selvhion o the &7vb-\—?on

——b — —
C\V( “" O X ""Cp\/w"'o
5 =, =...zla=0

(b) (10 points) Determine whether the given mnatrices are linearly dependent or linearly inde-
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3. (15 points)

(a) (5 points) Let vi,...,Vv, be vectors in a vector space V. Write down what it means for
a vector w € V to lie in the span of {vy,...v,}. Equivalently, you can write down a
definition for the subspace W = Span{vy,...,v,}.
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(b) (10 points) For what values of ¢ does the vector
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lie in the span of the following vectors
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4. (10 points)

(a) (5 points) Let vy,...,v, be vectors in a vector space V. Write down what it means for
{v1,...,vn} to form a basis for V.
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(b) (5 points) Determine if the polynomials p;(z) = 2? + z + 2, po(z) = x® + 2z + 1, and
p3(z) = 222 + 5z + 1 form a basis for P,.
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5. (10 points) Let a be the basis given by
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(a) (5 points) Find [v], if
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(b) (5 points) Find w if
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find a basis for NS(A), RS(A), and determine the rank of A.
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6. (15 points) If
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7. (15 points) Suppose A is a 5 x 3 matrix.

(a) (5 points) (Short Answer:) What is the largest possible value for the dimension of the
columnspace of A?

(b) (5 points) (Short Answer:) What is the largest possible value for the dimension of the
rowspace of A7

(¢} (5 points) (Short Answer:) What is the smallest possible value for the dimension of the
nullspace of A?
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8. (10 points) Using the Wronskian, determine if the functions f(z) = 1/z and g(z) = z are
linearly independent on the interval (0, co).
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