MTH 357/657 Homework #6

Due Date: March 02, 2023

1 Moment Generating Functions

Given that X has the probability distribution $f(x) = \frac{1}{8} {3 \choose x}$ for x = 0, 1, 2, and 3, find the moment-generating function of this random variable and use it to determine μ'_1 and μ'_2 .

2. Find μ , μ'_2 , and σ^2 for the random variable X that has the probability distribution f(x) = 1/2 for x = -2 and x = 2.

2 $\frac{3}{2}$ If the random variable X has the mean μ and the standard deviation σ , show that the random variable

$$Z = \frac{X - \mu}{\sigma}$$

satisfies

$$\mathbb{E}(Z) = 0$$
 and $\mathbb{E}(Z^2) = 1$.

2 7 The symmetry or skewness (lack of symmetry) of a distribution is often measured by means of the quantity

$$\alpha_3 = \frac{\mu_3}{\sigma^3}$$
.

Draw histograms and calculate α_3 for probability distributions f(x) and g(x) satisfying

(a)
$$f(1) = .05$$
, $f(2) = .15$, $f(3) = .30$, $f(4) = .30$, $f(5) = .15$, and $f(6) = .05$;

(b)
$$g(1) = .05$$
, $g(2) = .20$, $g(3) = .15$, $g(4) = .45$, $g(5) = .10$, and $g(6) = .05$.

The first distribution is symmetrical while the second has a "tail" on the left-hand side and is said to be negatively skewed.

The extent to which a distribution is peaked or flat, also called the kurtosis of the distribution, is often measured by means of the quantity

$$\alpha_4 = \frac{\mu_4}{\sigma_4^4}$$
.

Draw histograms and calculate α_4 for probability distributions f(x) and g(x) satisfying

(a)
$$f(-3) = .06$$
, $f(-2) = .09$, $f(-1) = .10$, $f(0) = .5$, $f(1) = .10$, $f(2) = .09$, and $f(3) = .06$.

(b)
$$f(-3) = .04$$
, $f(-2) - .11$, $f(-1) = .20$, $f(0) = .30$, $f(1) = .20$, $f(2) = .11$, and $f(3) = .04$.

2 6. Find the moment generating function of the discrete random variable X that has the probability distribution

$$f(x) = 2\left(\frac{1}{3}\right)^x$$
 for $x = 1, 2, 3, ...$

and use it to determine the values of μ'_1 and μ'_2 .

2 Tchebysheff's Theorem

- 2 (1.) What is the smallest value of k in Tchebysheff's theorem for which the probability that random variable will take on a value between $\mu k\sigma$ and $\mu + k\sigma$ is
 - (a) at least .95;
 - (b) at least .99.
 - 2. If we let $k\sigma = c$ in Tchebysheff's theorem, what does this theorem assert about the probability that a random variable will take on a value between μc and $\mu + c$.
 - 3. The number of marriage licenses issued in a certain city during the month of June may be looked upon as a random variable with $\mu=124$ and $\sigma=7.5$. According to Tchebysheff's theorem, with what probability can we assert that between 64 and 184 marriage licenses will be issued during the month of June.

料

Given that S(x) = g(x) for $x = 0, 1, 2, and 3, find the moment generating function of this random variable and use it to determine <math>N_i$ and N_i .

Solution!

$$m(t) = \mathbb{E}[e^{tX}] = \frac{1}{7}((\frac{3}{6})e^{0} + (\frac{3}{1})e^{2t} + (\frac{3}{1})e^{2t} + (\frac{3}{1})e^{3t})$$

$$= \frac{1}{7}(1+3e^{t} + 3e^{2t} + e^{3t})$$

$$= \frac{1}{7}(1+e^{t})^{\frac{3}{7}}$$

Therefore,

$$m'(t) = \frac{3}{8}(1+e^{t})^{2}e^{t}$$

 $m'(t) = \frac{6}{8}(1+e^{t})e^{2t} + \frac{3}{8}(1+e^{t})^{2}e^{t}$

and thus

$$m'(0) = \nu' = \frac{12}{8} = \frac{3}{2}$$

 $m''(0) = \nu' = \frac{6}{8} \cdot 2 + \frac{3}{8} \cdot 4 = \frac{24}{8} = 3$.

共3.

If the random variable X has the mean u and standard deviation of show that the random variable

0

Satisfies

Calculating, we have that $N' = .05 + 2 \cdot .15 + 3 \cdot .30 + 4 \cdot .30 + 5 \cdot .15 + 6 \cdot .05 = 3.5.$ $N' = .05 + 4 \cdot .15 + 9 \cdot .30 + 16 \cdot .30 + 25 \cdot .15 + 36 \cdot .05 = 13.7.$ Thus $\sigma = (w' - w'^2)^{1/2} = 1.20416$, Therefore, $\alpha_3 = \mathbb{E}((X - w')^3)$ $= [(1 - 3.5)^3 \cdot .05 + (2 - 3.5)^3 \cdot .15 + (3 - 3.5)^3 \cdot .30 + (4 - 3.5)^2 \cdot .30$ $+ (5 - 3.5)^3 \cdot .15 + (6 - 3.5)^3 \cdot .05]/(1.20416)^3$ $= [(-2.5)^3 \cdot .05 + (-1.5)^3 \cdot .15 + (5.5)^3 \cdot .30 + (5.5)^3 \cdot .30$ $+ (1.5)^3 \cdot .15 + (2.5)^3 \cdot .05]/(1.20416)^3$ = 0.

Calculating, we have that $N_1' = .05 + 2 \cdot .20 + 3 \cdot .15 + 4 \cdot .45 + 5 \cdot .10 + 6 \cdot .05 = 3.5$ $N_2' = .05 + 4 \cdot .20 + 9 \cdot .15 + 16 \cdot .45 + 25 \cdot .10 + 36 \cdot .05 = 13.7$ Thus $0 = lN_1' - N_1'^2)^{1/2} = 1.20416$. Furtherefore, $E[(X - v_1')^3] = -2.5^3 \cdot .05 - 1.5^3 \cdot .20 - .5^3 \cdot .15 + .5^3 \cdot .45 + 1.5^3 \cdot .10 + 2.5^3 \cdot .05$ $= -.10 \cdot 1.5^3 + .5^3 \cdot .30$ = -.3

Therefore, $\alpha_3 = \mu_3 = -.3 = -.1718$.

```
#6
   Find the moment generating function of the discrete random variable
 I that has the probability distribution
                 f(x) = 2(\frac{1}{3})^{x} for x = 7, 1, 2, 3
 and use it to determine w, and w.
Solution
m(t) = \mathbb{E}[e^{\pm X}]
           =\sum_{x=1}^{\infty}e^{+x}\cdot 2(\frac{1}{3})^{x}
          =25(e^{*}/_{3})^{x}
          = 2 5 (e 1/3) X+1
          = \underbrace{2e^{+} \sum_{X=0}^{\infty} \left(\frac{e^{-}}{3}\right)^{X}}_{X=0}
Consequently,
      m'(t) = (3-e^{t})2e^{t} + 2e^{2t}
= \frac{6e^{+}}{(3-e^{+})^{2}}
      m'(+)= (3-e+)26e+-6e+. 213-e+)(-c+)
   \Rightarrow \nu = \frac{6}{4} = \frac{3}{2}, \quad \nu' = \frac{4 \cdot 6 + 12 \cdot 2}{16} = \frac{2 + 3}{16}.
```

土上 What is the smallest value of Kin Tenebysheff's theorem for which the random variable will take on a value between u-ko and u+ko is (a) at least , 95; (b) at least . 99. Solutioni (a) Since P(|X-v|=Kr) = 1/2 we need /k= 05= 1/100 > K'= 10%5 >K=1%5=4.47. (b) Likewise we need /K= 0 = /100 >> K=10.