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An Example of the Misuse of Mathematics
in the Social Sciences

Abigail Thompson

What Is the Issue and Why Should We Care?
“Diversity” has become an important concept in the
modern university, affecting admissions, faculty
hiring, and administrative appointments. In the
paper “Groups of diverse problem solvers can
outperform groups of high-ability problem solvers”
[1], L. Hong and S. Page claim to prove that “To put
it succinctly, diversity trumps ability.” We show
that their arguments are fundamentally flawed.

Why should mathematicians care? Mathemati-
cians have a responsibility to ensure that math-
ematics is not misused. The highly specialized
language of mathematics can be used to obscure
rather than reveal truth. It is easy to cross the
line between analysis and advocacy when strongly
held beliefs are in play. Attempts to find a math-
ematical justification for “diversity” as practiced
in universities provide an instructive example of
where that line has been crossed.

In this article we examine the arguments of
the Hong and Page paper in detail. The paper
contains what the authors call a “Mathematical
Theorem,” ostensibly proving that a group picked
on the basis of “diversity” criteria outperforms
one picked on the basis of “ability.” In contrast to
much of the diversity research literature, this paper
claims to be based on mathematical reasoning.
Its publication in 2004 in the Proceedings of
the National Academy of Sciences has given it
credibility, and it is widely cited. Its conclusions
are presented as mathematical truth. Referring
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to this work in his 2007 book The Difference [3]
(p. 165), Page says,
...the veracity of the diversity trumps ability
claim is not a matter of dispute. It’s true, just
as 1+ 1 =2is true.

Under careful scrutiny, however, the paper is seen
to have essential and irreparable errors.

The mathematical content of [1] is presented
in two main sections. In the first of these, “A
Computational Experiment,” the authors describe
a computer simulation involving a collection of
algorithms working together to solve a simple
optimization problem. In this section the authors
find that one collection of algorithms outperforms
a second collection. They assign the label “diversity”
to the first collection and the label “ability” to
the second, and conclude that this is evidence
that “diversity trumps ability.” In a subsequent
section titled “A Mathematical Theorem,” the
authors indicate that their analysis “...explores the
logic behind the simulation results and provides
conditions under which diversity trumps ability.”

There are multiple problems in each of these
sections. We can summarize the content of the
theorem as follows: suppose that a group of people
is set a task and the entire group’s performance is
compared to that of just one member of the group
working alone on the same task. Assume also
that the conditions of the task are such that one
person working alone can never complete the task,
and that the whole group working together will
always complete the task. It is neither surprising
nor difficult to see that, in this situation, the group
as a whole will outperform the individual. Yet this
is the entire content of what Hong and Page call
the “Mathematical Theorem,” Theorem 1 in [1].
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We also point out several issues with the
“Computational Experiment” section of [1]. Here the
authors discuss computer simulations intended to
illustrate and support the conclusions of Theorem 1.
We demonstrate that Theorem 1 is unrelated to the
computational experiment and that the experiment
offers no support for the social applications
proposed by the authors.

A Mathematical Theorem

We first consider the section “A Mathematical
Theorem” [1]. Theorem 1 of that section is the
basis of the claim that there is a mathematical
proof that diversity trumps ability. Once the
unnecessary technicalities are removed and basic
errors corrected, the theorem is revealed to be
little more than a straightforward restatement of
its hypotheses. Furthermore, a careful examination
of Theorem 1’s statement shows that it has no
real-world applications.

Statement of the Theorem

Theorem 1 concerns the problem of finding the
maximum value of a fixed real-valued function
V defined on a finite set X. The function V
is assumed to attain its maximum at a unique
point x* in X. Attempting to find this maximum
is a finite collection of algorithms, which Hong
and Page call “agents,” or “problem-solvers.” The
collection of k agents (algorithms) is denoted by
®. An agent ¢ is a function from X to X such
that V(¢ (x)) = V(x). Depending on the initial
point x in X, an agent ¢ will sometimes but not
always return the point x* at which V achieves
its maximum. Agents can work together in some
way on the problem of finding the maximum
of V. The authors assume that two copies of a
single agent working together operate sequentially
using composition of functions, with one taking as
input the output of another. Combined with their
definition of an agent, this implies that multiple
copies of one agent perform identically to a single
copy, an assumption required for their proof. We
note that this is a strikingly restrictive and artificial
condition, precluding an intelligent division of
work.

Each agent produces an average value for V, by
averaging over all starting points in X with equal
weight. Agents can be ordered by these average
values, and one agent is said to be better than
another if its average is larger.

Hong and Page then make the following assump-
tions.

e Assumption 1: V¢ € &, I3x € X such that
V(g (x)) < V(x*);i.e., for each agent, there
is some starting point for which V of its
stopping point is not the global maximum.
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e Assumption 2: Vx € X, x = x*, d¢p € &
such that ¢(x) # x; i.e., no point of X is
fixed under all elements of ® except x*.

e Assumption 3: ® has a unique best element.

Additionally, as part of the definition of an
agent, they include:

e Assumption 0: (i) Vx € X, V(¢p(x)) = V(x).
(i) p(p(x)) = P(x).

Hong and Page offer this interpretation of
Assumption 2: “When one agent gets stuck, there is
always another agent that can find an improvement”
([1], p. 16387). This interpretation is incorrect
without the additional hypothesis that V(x) is
a one-to-one function. This error gives rise to
a counterexample to the theorem, described in
the Appendix. We proceed with the additional
assumption that V is one-to-one.

Given this additional hypothesis, together with
the additional assumption that agents “work
together” by successive composition of functions,
Hong and Page’s assumptions imply:

(1) An agent working alone will sometimes not
return the point x*.

(2) All agents working together will always
return the point x*.

(3) There is a unique best agent.

(4) Multiple copies of a given agent working
together perform identically to a single
copy.

From (2) we see that the complete collection of
all k agents in ®, working together, will always
return the point where the maximum value of
the function V occurs, irrespective of the initial
starting point. In contrast, k copies of the best
agent in ® behave identically to a single copy of the
best agent (4) and thus do not always return the
point where the maximum value of the function
V occurs (1). Thus the complete collection of all
k agents in ®, working together, performs better
than k copies of the best agent in ®. Theorem 1
amounts to little more than this simple observa-
tion. The following statement of the theorem, as
givenin ([1], p. 16388), may sound more impressive.

Theorem 0.1 (Theorem 1). Let ® be a group of
problem solvers that satisfy assumptions 1-3. Let u
be a probability distribution over ® with full support.
Then, with probability one, a sample path will have
the following property: there exist positive integers
N and N1, N = Ny, such that the joint performance
of the N, independently drawn problem solvers
exceeds the joint performance of the Ny individually
best problem solvers among the group of N agents
independently drawn from ® according to p.

In Page’s book The Difference this theorem has
been named the “Diversity Trumps Ability” theorem
([3], p- 162), and Page offers this application:
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How do we apply this in the real world? Simple.
When picking two hundred employees from
a pool of thousands, provided the people
are all smart, we should keep the theorem
in mind and not necessarily rank people by
some crude ability score and pick the best.
We should seek out difference.

While it may sound somewhat like Theorem 1,
this interpretation is not correct. In reality Theo-
rem 1 has nothing to say about hiring employees.
The principal reason it does not apply involves
the somewhat mysterious presence in the formal
statement of Theorem 1 of the numbers N and N;.
What is not clearly stated is that N and N; can, and
generally will, be substantially larger than k, the
size of the initial pool of agents (or employees). To
apply Theorem 1 to pick employees, you must be
willing and able to make large numbers of clones
of each of your job applicants, and you must be
interested in picking from this army of clones a
staff of tens of thousands, or the theorem has
nothing to say about your hiring process.

We now examine in more detail the authors’
arguments as they take a detour through prob-
ability. Our goal is to clarify the statement and
proof of Theorem 1, and the nature (and relative
magnitude) of the unspecified numbers N and Nj.

Idea of the Proof

We illustrate the proof of the corrected theorem
with a simple example, using the case k = 6. In
this case there are six distinct agents in ¢. We can
dispense with much of the technical language from
probability by associating each of these agents
to a face of a standard die, to facilitate picking
them at random. (While we confine ourselves to
the case k = 6 and equal probabilities for purposes
of clarity, the arguments apply more generally.
For arbitrary finite k we can use any probability
distribution with full support on k agents to select
agents at random.) Of critical importance, we need
to assume there are an unlimited number of copies
of each agent, so that, for example, the sentence
“Pick fifty agents at random from among the six
agents” makes sense. In contrast, in the process
of selecting job applicants in the real world, a
request to “Pick fifty workers to hire at random
from among six job applicants” does not make
sense. Suppose that Agent 1 is the unique best
agent of our six.

We are ready to understand the essential
argument of Theorem 1 in three steps:

Step 1: Throw the die fifty times, and record the
results. Call the corresponding collection of fifty
agents “Group A.” With high probability, Group A
contains at least one copy of each of the six agents.
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Of course Group A probably contains several
copies of each agent, but that’s okay; we just want
to make the size of the group large enough to be
reasonably certain that it will contain at least one
copy of each.

Step 2: Now throw the die 10,000 times, and record
the results. It is extremely likely that each face
of the die will show up at least fifty times in the
results. In particular, with high probability Agent
1 will show up at least fifty times in the results.
Hence if we select the best fifty agents from among
the 10,000 with high probability we will select fifty
copies of Agent 1. Call this collection of the best
fifty agents “Group B.”

Step 3: Since with high probability Group A includes
a copy of each of our original six agents, Group A
will, with high probability, always find the point
where the maximum value of V occurs (2). With
high probability Group B, however, is fifty copies of
Agent 1 and this group of fifty will not always find
the point where the maximum value of V occurs
((1) and (4)). Conclude that Group A outperforms
Group B.

In this example the numbers N and N; have
values N = 10,000 and N; = 50. The conclusion,
stated in English, would read something like this:

Given six distinct problem-solvers, if fifty are
selected at random from among these six, they
will, with high probability, collectively outperform
the fifty best problem-solvers chosen from 10,000
selected at random from among the six.

This is, as we have shown, an easy consequence.
Notice that, when stated this way, it does not sound
very sensible. One does not, in general, talk about
selecting fifty “problem-solvers” from a group
of six. This example highlights a misuse of the
word “problem-solvers” in the formal statement of
Theorem 1. A “problem-solver” strongly suggests
an individual person. However as Hong and Page
are using the word, a “problem-solver” is an
algorithm. Algorithms, unlike people, can be made
to duplicate each other exactly. Set ten copies of a
single algorithm to painting a house, and they will
paint the same wall ten times over. Ten humans
are unlikely to do so.

The problem revealed in the case k = 6 does not
disappear when using a larger initial set of distinct
problem-solvers, or agents. Regardless of the size
k of the initial pool of distinct problem-solvers,
the argument remains very much the same. There
is no information given by the theorem about the
performance of any proper subset of the initial
pool. The numbers N and N, not only may be much
larger than k, but indeed must be so for the proof
to work. The calculation of appropriate values of
N and N; is an instance of the classic “coupon
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collector’s problem” from standard probability
theory ([2], p. 32). The passage from “highly likely”
to certainty, as claimed in Theorem 1, requires a
consideration of what happens in the limit as N;
and N go to infinity.

What can reasonably be concluded from the
outperformance of Group A? Nothing. We should
not be even mildly surprised to find that a
group which includes the best agent along with
a collection of additional agents outperforms a
group consisting only of identical copies of the
best agent.

Furthermore, there is a curious and crucial dis-
crepancy between the mathematical argument and
the “diversity trumps ability” terminology. Some-
how Hong and Page have transformed Group A,
whose chief advantage is that it contains a copy
of every single agent in the pool, into a “diverse”
group. They say, “This result relies on the intuition
that, as the initial pool of problem solvers becomes
large, the best-performing agents necessarily be-
come similar in the space of problem solvers.
Their relatively greater ability is more than offset
by their lack of problem-solving diversity” ([1],
p. 16385). This claim doesn’t appear to have any
mathematical meaning; the term “diversity” has
not been defined in the context of Theorem 1.

Having disposed of the ideas that Theorem 1
either contains substantial mathematical content,
or is somehow applicable to real life, we now turn
to the section of [1] containing a computational
simulation.

A Computational Experiment

We give a description of the “Computational
Experiment” described in [1] (p. 16386). Let X =
[1,2,3,...,n] be the set consisting of the first n
integers, and let V be a function from X to the real
numbers. The goal posited in the computational
model in [1] is to find the maximum value of V on
the set X. The function V is assumed to have a
unique maximum at x*.

Fix two integers, [ and k, with 1 < k <[ < n, and
define an agent to be a list of k distinct integers in
[1,...,1]. An agent describes a procedure to find a
maximum value of V as follows:

The agent « = (a, a», as,...,ag) starts at some
point i of X. It checks the value of V ati and then at
i+a. If V(i) = V(i + a;), @ next checks the value
of Vati+a,. If V(i) < V(i +ay), x next checks the
value of V ati + a; + a». The search continues for
elements of X (mod n) and for successive integers
in o (mod k) until « gets stuck for a full k checks.
Call this the “stopping point” of « for i, and denote
it by «(i). Thus each « is a function from X to X.
The value of V at the stopping point i is a local
optimum for «. It is uniquely determined by « and
the starting point i. We note in passing that this is
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an odd and inefficient way to go about finding the
maximum value of a function on a finite set.

An agent « has an average value on X, defined
by (1/n)> ", V(x(i)). An agent « is said to be
better than an agent f if « has a higher average
value than B.

Hong and Page describe a simulation with
n = 2000, I = 20, and k = 3. This gives a pool
of 20 x 19 x 18 = 6840 agents. They select ten
at random and the ten best from the entire pool,
and compare their performance as groups. They
are surprised to find that the ten random agents
acting together outperform the ten best agents
acting together. We note that Theorem 1 offers no
insight into this experiment, since the assumptions
of the theorem are not met by the set-up of the
experiment.

To understand what this simulation is doing, we
ran a computer simulation following the descrip-
tion in [1] and were able to reproduce the results
(code available by request). To see why the result of
this simulation is not surprising, we take a closer
look at the data from one run of the program.
Since Hong and Page’s simulation was based on an
unreported random function on 2000 points, we
used a function on 2000 points constructed with a
random number generator.

For our simulation, we obtained the following
list of the ten best agents:

[12’4’ 13]! [7!91 14]! [4l 12! 13]! [10161 17]’
[17,10,6],[10,9,6],[17,9,13],[14,17,10],
[1,9,10],[6,10,17]

Here is a sample collection of ten random
agents, one of a set of twenty randomly generated
ten-agent collections:

[19,18,7],[11,14,8],[13,10,15],[12,13,5],
[10,9,20],[15,13,171,[20,6,141,[17,2,20],
[17,16,5],[1,15,3]

Hong and Page introduce “diversity” at this
juncture, through an arbitrary definition. Define
two ordered triples of integers to have a diversity
rating lying between 0 and 3, depending on how
many of the entries disagree. So (1,2,5) and
(1,4,5) are given a rating of 1, because they
disagree in one place, and (1,2,5) and (1,4,3)
get a rating of 2, because they disagree in two
places. The second pair of triples is considered
“more diverse” than the first. The pair (1,2, 3) and
(3,1,2) is even more “diverse,” with a diversity
rating of the maximal possible 3, since none of the
ordered entries match. Adding up the “diversity”
of our set of ten random agents over all forty-five
possible pairs, we get a total of 131, which is larger
than 120, the total “diversity” of our set of ten best
agents. With the gentlest of pushes, the random
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group has been recast as the more diverse group
and the authors make the leap of logic that this
group performs better because it is more diverse.

This argument has several problems. A misuse
of terminology compounds them. First, the authors
are apparently unaware of a principle that is
widely known in both the theory of probability
and the theory of algorithms. This is the idea that
randomization can improve algorithms, and often
can improve them dramatically. This phenomenon
has been studied by mathematicians and com-
puter scientists for forty years. There are many
well-known, important algorithms based on this
principle, including, for example, primality testing.
It is certainly a powerful idea, but not new, and
not “diversity.”

Second, the authors make the common mistake
of confusing correlation with causation. Because
the random group had a characteristic to which
the authors assigned the name “diversity,” they
attributed the relative success of the random group
to “diversity.” However there is no indication that
the cause of this random group’s success is its
“diversity.”

Indeed, if its greater “diversity” is really the
cause of the group’s improved performance, then a
group maximizing “diversity” would perform even
better than a random group. But our replication
of the authors’ model shows this is not the case.
We ran the simulation with different groups of ten
agents that achieved maximal possible “diversity.”
In all cases, a maximally “diverse” group performed
less well than the median performance of 200
random groups of ten agents. In the spirit of [1],
we might claim that randomness trumps diversity.

This is not unexpected, and it confirms our first
point. Not only does randomness help in algorithms,
but randomness often does better than any known
deterministic procedure. As stated in Probability
and Computing by Mitzenmacher and Upfal [2],
“In...many important applications, randomized
algorithms are significantly more efficient than
the best known deterministic solutions.” The
contrived optimization problem in [1] gives an
example of a situation where randomly chosen
agents perform better than algorithms that choose
agents according to deterministic characteristics,
whether they are labeled “diversity” or “ability.”

Finally, the attempt to assign a standard English
meaning to a mathematical phenomenon is fraught
with peril. For example, in the “Computational
Experiment,” instead of giving two ordered triples
of integers a diversity rating between zero and
three, we could instead assign them a hostility
rating of between zero and three. Indeed we can
do this using precisely the same mathematical
definition as before; all we will change is the English
word attached to the mathematical definition. One
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could argue that this is a more natural terminology,
since it reflects the extent of disagreement between
two triples. Thus we can give (1,2,5) and (1,4, 5)
a hostility rating of 1, because they disagree in one
place, and (1, 2,5) and (1, 4, 3) a hostility rating of
2, because they disagree in two places.

What does the simulation show now? It is still
the case that the ten random agents acting together
outperform the ten best agents acting together.
But strikingly, we can observe, using precisely
the same information as before, that the random
group is much more hostile than the best group.
Using Hong and Page’s line of reasoning, we would
be driven to the conclusion that hostility trumps
ability. That is, if you are trying to form a team
to maximize performance on a task, you should
make your selection to maximize mutual antipathy
among members of the team. We don’t recommend
this approach, but it is as well founded as Hong
and Page’s diversity recommendations.

Summary of Problems
Any one of the problems listed below would be
sufficient to invalidate the claims of the authors.

(1) Theorem 1 is incorrect as stated.

(2) Once corrected, Theorem 1 is trivial. It is
stated in a way which obscures its meaning.
It has no mathematical interest and little
content.

(3) Theorem 1 is unrelated to the “Computa-
tional Experiment.” Not only are the numbers
of agents selected too small for the theo-
rem to come into play, the hypotheses of
the theorem are generally not met. See the
Appendix for a detailed example.

(4) The “Computational Experiment” is a con-
trived optimization problem in which the
restrictions on the algorithms are artificial.

(5) The “Computational Experiment” is an illus-
tration of the benefits of randomness, not
“diversity.”

(6) The “Computational Experiment” has a sim-
ple optimal algorithm; the best algorithm
simply checks the value of the function V
at every point. That is the “highest ability”
algorithm for the problem, and it clearly
works better than any other possible combi-
nation of alternative algorithms, unless they
collectively also always return x*.

(7) The attempt to equate mathematical quanti-
ties with human attributes is inappropriate.
For example, to associate two triples of
integers (1,2,3) and (3,1,2) with two
“problem-solvers” who have a “diverse” ap-
proach to problem-solving is not plausible.
It is just as reasonable to say they represent
two hostile “problem-solvers.”
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Who Uses this Result?
The “Diversity Trumps Ability” concept is appealing
in certain circles. A Google search for “Diversity
Trumps Ability” turns up over 70, 000 hits, some
referencing [1], and some the book Page wrote on
similar themes [3]. Page’s work on diversity has
been cited by NASA [4], the US Geological Survey
[5], and Lawrence Berkeley Labs [6], among many
others.

Hong and Page’s paper has been used to give
a scientific veneer to the diversity field, as it is
one of the few research papers that appears to
rely on more than qualitative information for its
conclusions. Page comments on Theorem 1 in his
book The Difference [3] (p. 162),

This theorem is no mere metaphor or cute

empirical anecdote that may or may not be

true ten years from now. It is a mathematical
truth.

This is just wrong. The claim that diversity
trumps ability has been given no foundation by
Hong and Page’s paper.

To summarize, the paper “Groups of diverse

problem solvers can outperform groups of high-

ability problem solvers” [1] contains a theorem that
has neither mathematical content nor real-world
applications, and a contrived computer simulation
that illustrates the well-known fact that random
algorithms are often effective. What the paper
emphatically does not contain is information that
can be applied to any real-world situation involving
actual people.
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Appendix

We provide a counterexample to Theorem 1, and
an example to illustrate that the hypotheses of
Theorem 1 are not met by the setup of the
“Computational Experiment.”

For completeness, we restate Theorem 1 as it
appears in [1]. We also indicate how to correct
the problem demonstrated by the counterexample
by adding a hypothesis. Note that Assumption 0
is included in [1] as part of the definition of a
“problem-solver.”

e Assumption 0: (i) Vx € X, V(¢ (x)) = V(X).

(i) p(Pp(x)) = P(x).

e Assumption 1: V¢ € &, Ix € X such that
V(g (x)) < V(x*);li.e, for each agent, there
is some starting point for which V of its

stopping point is not the global maximum.
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e Assumption 2: Vx € X, x = x*, d¢p € &
such that ¢(x) # x; i.e., no point of X is
fixed under all elements of ® except x*.

e Assumption 3: ® has a unique best element.

Theorem 1 of [1]

Let ® be a group of problem solvers that satis-
fies assumptions (1)-(3). Let u be a probability
distribution over ® with full support. Then, with
probability one, a sample path will have the follow-
ing property: there exist positive integers N and
N1, N = Ny, such that the joint performance of the
N independently drawn problem solvers exceeds
the joint performance of the N; individually best
problem solvers among the group of N agents
independently drawn from ¢ according to p.

Counter-example to Theorem 1

Let X = {a,b,c,d}. Define V(x) and three agents
¢1, ¢» and ¢3 according to the table below:

[ [a[b[c[d]
Vix) |12]2]3
d1(x) |d|b|c|d
¢2(x) | c|clc|d
¢$3(x) [b[b[b]|d

The set of agents ® = {¢1, P2, P3} satisfies all
the hypotheses of Theorem 1. The agents ¢ 1, ¢», ¢3
have average values 5/2,9/4,9/4 respectively, so
¢1 is the “best” agent. Notice that all three agents
acting together do not always return the point d,
where the maximum of V occurs. Indeed all three
agents acting together work only as well as ¢;
acting alone. Hence in this case, no group of agents
can outperform ¢, or, equivalently, multiple
copies of ¢1, hence no N and N; exist which
satisfy the theorem.

The error occurs in Lemma 1 of [1]. It arises
because the informal interpretation of Assump-
tion 2 “When one agent gets stuck, there is always
another agent that can find an improvement” ([1],
p- 16387) is used; however, this informal interpre-
tation is incorrect. For example, ¢; “gets stuck” at
b, however neither ¢, nor ¢3 “improves” on V(b).
However, as required by Assumption 2, ¢ (b) = b.

To avoid this problem, one can add the
assumption that V is a one-to-one function.

Theorem 1 and the Computational Experiment

The hypotheses of Theorem 1 are not met by the
setup of the “Computational Experiment.” Even
stipulating that V is a one-to-one function does
not correct the problems found here, but we will
assume it for convenience. We illustrate that it
is highly likely under the setup described that
there will be points in X where all the agents
“get stuck,” violating Assumption 2 of Theorem 1. To
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see why, consider the case where X consists of the
first 2000 integers, and k = 3 and I = 20, as in the
“Computational Experiment.” Let x; be the point
where V' achieves its maximum. Suppose that x; is
the point where V achieves its next-highest value.
Notice that, if x; — x; is not between 1 and 20
mod(2000), all agents will get stuck at x;, violating
Assumption 2. Hence it is fairly likely that all
agents will get stuck at x;. This argument can
be iterated through the decreasing values of V,
making it highly likely that all agents will get stuck
at some x for fixed V.
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