MTH 352/652
 Quiz \#8

Special Directions: This is a small group quiz with the teams assigned below. You are only allowed to work with your teammates. Any intentional communication with other teams will result in a zero for your entire team. Each member of the team will receive the same grade based on the lowest score.

Team \#1	Team \#2	Team \#3	Team \#4
Emily	Lyle	Sarah	Ethan
Jasmine	Yiyi	Shelby	Mandy
Nick	Cordell	Jiachen	Colin
Miguel	Cole	Steven	Clay

1. Suppose $\Omega=\left\{(x, y) \in \mathbb{R}^{2}: 1 \leq x^{2}+y^{2} \leq 4\right\}$. Solve the following boundary value problem on Ω. Hint: You can just use the general form of the solution to Laplace's equation in polar coordinates.

$$
\begin{aligned}
& \Delta u=0 \\
& \left.u\right|_{x^{2}+y^{2}=4}=4+3 \sin (2 \theta)+\cos (2 \theta) \\
& \left.u\right|_{x^{2}+y^{2}=1}=0 \\
& U(r, \theta)=a+b \ln (r)+\left(c r^{2}+d r^{2}\right) \sin (2 \theta)+\left(f r^{2}+y r^{-2}\right) \cos (2 \theta) \\
& u(1, \theta)=0=a+(c+d) \sin (2 \theta)+(f+g) \cos (2 \theta) \\
& \Rightarrow a=0, c=-d, f=-z \\
& U(2, \theta)=4+3 \sin (2 \theta)+\cos (2 \theta) \\
& =b \ln (2)+\left(c x^{2}-c x^{-2}\right) \sin (2 \theta)+\left(f \cdot 2^{2}-f \cdot 2^{-2}\right) \cos (2 \theta) \\
& =b \ln (2)+\frac{15}{4} c \sin (2 \theta)+\frac{15}{4} f \cos (2 \theta) \\
& \Rightarrow b=\frac{4}{\ln (2)}, c=4 / 5, f=4 / 15 \\
& U(r, \theta)=\frac{4}{\ln (2)} \ln (r)+\frac{4}{5}\left(r^{2}-r^{-2}\right) \sin (2 \theta)+\frac{4}{15}\left(r^{2}-r^{-2}\right) \cos (2 \theta)
\end{aligned}
$$

