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Summary of last time

e If Q is a quaternary quadratic form, Og(z) = >_ ro(n)q" is a
modular form.
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Summary of last time

e If Q is a quaternary quadratic form, Og(z) = >_ ro(n)q" is a
modular form.

e We can write rg(n) = ag(n) + ac(n). There are explicit lower
bounds on ag(n) of the form ag(n) > Cgn'~.

Jeremy Rouse Integers represented by QFs 2/38



Summary of last time

e If Q is a quaternary quadratic form, Og(z) = >_ ro(n)q" is a
modular form.

e We can write rg(n) = ag(n) + ac(n). There are explicit lower
bounds on ag(n) of the form ag(n) > Cgn'~.

e There is a constant Cg so that |ac(n)| < Cqd(n)v/n, but
computing Cg explicitly is hard.
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Outline

o Quantitative forms of Tartakowski's theorem
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Outline

o Quantitative forms of Tartakowski's theorem

o [-functions
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Outline

o Quantitative forms of Tartakowski's theorem
o [-functions

@ Bounding Cqp without computing it.
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Tartakowski’s theorem

Tartakowski's theorem

e Let @ be a positive-definite quadratic form in r > 4 variables.
Then n is represented by @ if
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Tartakowski’s theorem

Tartakowski's theorem

e Let @ be a positive-definite quadratic form in r > 4 variables.
Then n is represented by @ if

@ nis locally represented by @, and

o n is sufficiently large, and
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Tartakowski’s theorem

Tartakowski's theorem

e Let @ be a positive-definite quadratic form in r > 4 variables.
Then n is represented by @ if

@ nis locally represented by @, and
o n is sufficiently large, and

o if r =4, nis squarefree.
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Tartakowski’s theorem

Tartakowski's theorem

e Let @ be a positive-definite quadratic form in r > 4 variables.
Then n is represented by @ if

@ nis locally represented by @, and
o n is sufficiently large, and

o if r =4, nis squarefree.

e Q: For a quaternary form Q, how large is the largest locally
represented squarefree n that isn't represented by Q7

Jeremy Rouse Integers represented by QFs 4/38



Tartakowski’s theorem

Notation (1/2)

e Write Q(X) = X7 AX where A has integer entries and even
diagonal entries.
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Tartakowski’s theorem

Notation (1/2)

e Write Q(X) = X7 AX where A has integer entries and even
diagonal entries.

e Let N(Q) be the smallest positive integer so that N(Q)A~! has
integer entries and even diagonal entries. Define D(Q) = det(A).
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Tartakowski’s theorem

Notation (1/2)

e Write Q(X) = X7 AX where A has integer entries and even
diagonal entries.

e Let N(Q) be the smallest positive integer so that N(Q)A~! has
integer entries and even diagonal entries. Define D(Q) = det(A).

e Let || Q|| be the largest entry in the matrix A.

Jeremy Rouse Integers represented by QFs LYkt



Tartakowski’s theorem

Notation (2/2)

e We write f(n) < g(n) if there are constants C; and C; so that
f(n) < Cig(n) for n > G,.
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Tartakowski’s theorem

Notation (2/2)

e We write f(n) < g(n) if there are constants C; and C; so that
f(n) < Cig(n) for n > G,.

e We write f(n) < n**€ if for all € > 0, f(n) < C.n**< if nis large
enough.
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Tartakowski’s theorem

Results (1/4)

Theorem 1 (Schulze-Pillot, 2001)

If Q is a 4-variable QF and n satisfies appropriate local conditions
and n>> N(Q)¥¢, then n is represented by Q.

Jeremy Rouse Integers represented by QFs 7/38



Tartakowski’s theorem

Results (1/4)

Theorem 1 (Schulze-Pillot, 2001)

If Q is a 4-variable QF and n satisfies appropriate local conditions
and n>> N(Q)¥¢, then n is represented by Q.

Theorem 2 (Browning-Dietmann, 2008)

If Q is a 4-variable QF and n satisfies (different) appropriate local
conditions and n > D(Q)?||Q||8*<, then n is represented by Q.
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Tartakowski’s theorem

Results (2/4)

e A discriminant is an integer D =0 or 1 (mod 4). A fundamental
discriminant D is a discriminant with the property that there is no

k > 1 so that k?|D and 5 is a discriminant.
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Tartakowski’s theorem

Results (2/4)

e A discriminant is an integer D =0 or 1 (mod 4). A fundamental
discriminant D is a discriminant with the property that there is no

k > 1 so that k?|D and 5 is a discriminant.

Theorem 3 (R, 2014)

Suppose that Q is a 4-variable QF and D(Q) is a fundamental
discriminant. Then, if n > D(Q)?*¢, then n is represented by Q.
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Tartakowski’s theorem

Results (3/4)

Theorem 4 (R)

Let Q be a 4-variable QF. Assume that gcd(n, D(Q)) =1 and n is
locally represented by Q. If

n> D(Q)EN(Q)>*,

then n is represented by Q.
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Tartakowski’s theorem

Results (3/4)

Theorem 4 (R)

Let Q be a 4-variable QF. Assume that gcd(n, D(Q)) =1 and n is
locally represented by Q. If

n> D(Q)EN(Q)>*,

then n is represented by Q.

Theorem 5 (R)

Let Q be a 4-variable QF. Assume that n is locally represented
(but not represented by Q) and n > (D(Q)N(Q))3*¢. Then there
is an anisotropic prime p so that p?|n and np®* is not represented
for any k > 0.
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Tartakowski’s theorem

Results (4/4)

Theorem 6 (R-Thompson)
Suppose that Q is a 4-variable QF and D(Q) = p is prime. Then

> on<p
n

rq(n)=0
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Tartakowski’s theorem

Results (4/4)

Theorem 6 (R-Thompson)
Suppose that Q is a 4-variable QF and D(Q) = p is prime. Then

> on<p
n

I’Q(I‘I)ZO

| A\

Theorem 7 (R-Thompson)
Let p = 8t + 5 be prime and

Q(x,y,z,w) = x* +xy +xz +xw + y? + yz + yw + 2° + zw + tw>.

Then D(Q) = p and the largest positive integer not represented by
Q is the largest positive integer m < t that is not of the form
45(16¢ + 14).
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L-functions

The Petersson inner product (1/2)

e Instead of exactly computing Cg, we derive an upper bound for
it with less computation. This method works only when
D(Q) = N(Q) is a fundamental discriminant.
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L-functions

The Petersson inner product (1/2)

e Instead of exactly computing Cg, we derive an upper bound for
it with less computation. This method works only when
D(Q) = N(Q) is a fundamental discriminant.

e We use the Petersson inner product of two cusp forms
f,g € S(lo(D), xp) given by

S X+ iy)g(x T ) dx
(8 = i) Fa00 oy O PO F P
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L-functions

The Petersson inner product (1/2)

e Instead of exactly computing Cg, we derive an upper bound for
it with less computation. This method works only when
D(Q) = N(Q) is a fundamental discriminant.

e We use the Petersson inner product of two cusp forms
f,g € S(lo(D), xp) given by

S X+ iy)g(x T ) dx
(8 = i) Fa00 oy O PO F P

e Distinct newforms are orthogonal with respect to the Petersson
inner product.
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L-functions

The Petersson inner product (2/2)

e From the decomposition of C(z) = 0¢g(z) — E(z) we get

S

(C(2),C(2)) = ) lcil*(gi. &0)-

i=1
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L-functions

The Petersson inner product (2/2)

e From the decomposition of C(z) = 0¢g(z) — E(z) we get

(C(2),C(2)) = ) lcil*(gi. &0)-
i=1

e Step 1: Bound from below (gj, gj) from an arbitrary newform g;.
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L-functions

The Petersson inner product (2/2)

e From the decomposition of C(z) = 0¢g(z) — E(z) we get

(C(2),C(2)) = ) lcil*(gi. &0)-
i=1

e Step 1: Bound from below (gj, gj) from an arbitrary newform g;.

e Step 2: Bound from above (C(z), C(z)).
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L-functions

Intro to L-functions

e An L-function L(s) = 02, '3,(72') must satisfy the following
properties:
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Intro to L-functions

e An L-function L(s) = 02, '3,(72') must satisfy the following
properties:

e There is a meromorphic continuation of L(s) to all of C.
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L-functions

Intro to L-functions

e An L-function L(s) = 02, '3,(72') must satisfy the following
properties:

e There is a meromorphic continuation of L(s) to all of C.

e The function L(s) has an Euler product, a factorization

d
)= I TI0 - awep)™

p prime i=1
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L-functions

Intro to L-functions

e An L-function L(s) = 02, '3,(72') must satisfy the following
properties:

e There is a meromorphic continuation of L(s) to all of C.

e The function L(s) has an Euler product, a factorization

d
)= I TI0 - awep)™

p prime i=1

e There's a functional equation relating L(s) and L(k — s).
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L-functions

Elliptic curve L-functions

o If E:y?=x3 1+ Ax + B, then the L-series of E is
L(E,s)=>_ a(E) "If p is prime, ap(E)=p+1—|E(F),)|.

ns
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L-functions

Elliptic curve L-functions

o If E:y?=x3 1+ Ax + B, then the L-series of E is
L(E,s)=>_ a(E) "If p is prime, ap(E)=p+1—|E(F),)|.

ns

e The function L(E,s) has an analytic continuation to all of C.
Also,
L(E,s)=]J(1—ap(E)p+p" )"
P
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L-functions

Elliptic curve L-functions

o If E:y?=x3 1+ Ax + B, then the L-series of E is
L(E,s)=>_ a(E) "If p is prime, ap(E)=p+1—|E(F),)|.

ns

e The function L(E,s) has an analytic continuation to all of C.
Also,

L(E,s) = J](1 - ap(E)p~* + p2) .
P

o If A(s) = N(E)*/?(21) =T (s)L(E,s), then A(s) = eA(2 — s),
where € € {1, —1}.
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L-functions

Approximate functional equation

e The most relevant property of L-functions for us is the
approximate functional equation — a quickly converging series that
gives a value of L(E,s).
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L-functions

Approximate functional equation

e The most relevant property of L-functions for us is the
approximate functional equation — a quickly converging series that
gives a value of L(E,s).

e For an elliptic curve L-function, this formula gives

oo

L(E,1)=(1+ez

n=1

27rn

V/N(E)

a,, -
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L-functions

Approximate functional equation

e The most relevant property of L-functions for us is the
approximate functional equation — a quickly converging series that
gives a value of L(E,s).

e For an elliptic curve L-function, this formula gives

oo

L(E,1)=(1+ez

n=1

27rn

V/N(E)

a,, -

e This allows one to quickly compute L(E,1).
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L-functions

Rankin-Selberg L-functions

o If f(z) = 32721 a(n)q" and g(z) = 302, b(n)q", the

Rankin-Selberg L-function is (approximately)

[e.o]

L(f®g,s) Za

n=1
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L-functions

Rankin-Selberg L-functions

o If f(z) = 32721 a(n)q" and g(z) = 302, b(n)q", the

Rankin-Selberg L-function is (approximately)

[e.o]

L(f®g,s) Za

n=1

e The Petersson inner product of f and g is essentially the residue
of L(f®g,s) at s = 1.
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L-functions

Rankin-Selberg L-functions

o If f(z) = 3202 a(n)g" and g(z) = 3272, b(n)q", the

Rankin-Selberg L-function is (approximately)

[e.o]

L(f®g,s) Za

n=1

e The Petersson inner product of f and g is essentially the residue
of L(f®g,s) at s = 1.

e We require the exact description of local factors of L(f ® g, s)
and the precise form of the functional equation.
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L-functions

Relation with inner product

e For newforms f(z) =372, a(n)q" and g(z) = > .2, b(n)q", we
have

= «(nD)Re (a(m)b(m
wegs=> | 3 FTORCEMEm Ly

m ns

n=1 m|n
n/mis a square
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L-functions

Relation with inner product

e For newforms f(z) =372, a(n)q" and g(z) = > .2, b(n)q", we
have

= w(mD)Re (a(m)b(m
rogs=) | 3 ErRelmiml) Loy
n=1 m|n

n/mis a square

e The residue at s =1 of L(f ®f,s) is
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L-functions

Modular forms with complex multiplication

e We say that a newform f(z) = >, a(n)q" has complex
multiplication if there is some discriminant D so that xp(p) = —1
implies that a(p) = 0.
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L-functions

Modular forms with complex multiplication

e We say that a newform f(z) = >, a(n)q" has complex
multiplication if there is some discriminant D so that xp(p) = —1
implies that a(p) = 0.

e Modular forms with complex multiplication come from Hecke
Grossencharacters associated to imaginary quadratic fields.
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L-functions

Modular forms with complex multiplication

e We say that a newform f(z) = >, a(n)q" has complex
multiplication if there is some discriminant D so that xp(p) = —1
implies that a(p) = 0.

e Modular forms with complex multiplication come from Hecke
Grossencharacters associated to imaginary quadratic fields.

e Given a discriminant D(Q), it is not difficult to explicitly
enumerate the newforms f with complex multiplication in
$2(Fo(D(Q)), xp(@)) and compute (f, f).
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L-functions

Lower bound on inner product

e Goldfeld, Hoffstein, and Lieman proved that if f does not have
complex multiplication, then L(f ® f,s) cannot have a real zero
close to s = 1.
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L-functions

Lower bound on inner product

e Goldfeld, Hoffstein, and Lieman proved that if f does not have
complex multiplication, then L(f ® f,s) cannot have a real zero
close to s = 1.

e We make their argument effective in this case. This yields a
lower bound on Ress—1L(f @ f,s).
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L-functions

Lower bound on inner product

e Goldfeld, Hoffstein, and Lieman proved that if f does not have
complex multiplication, then L(f ® f,s) cannot have a real zero
close to s = 1.

e We make their argument effective in this case. This yields a
lower bound on Ress—1L(f @ f,s).

e For non-CM f we get

Ress—1L(f @ f,s) > 26 log(N)’
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L-functions

Approximate functional equation

e For a newform f(z) = >, a(n)q", we have

ow (ged( nN))| (n)‘2 o n
= R 7 2 S (o/v)
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L-functions

Approximate functional equation

e For a newform f(z) = >, a(n)q", we have

ow (ged( nN))| (n)‘2 o n
= R 7 2 S (o/v)

e Here, 6
Y(x) = ——xK1(47x) + 24x*Ko(47x).
s
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L-functions

Extension to arbitrary cusp forms

o If G =37 cigiand Ca =) 7, djg; are two arbitrary cusp
forms, define

S

LG ® G, ) —ZquLg@gj, s)-

i=1 j=1
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L-functions

Extension to arbitrary cusp forms

o If G =37 cigiand Ca =) 7, djg; are two arbitrary cusp
forms, define

S

LG ® G, ) —ZquLg@gj, s)-

i=1 j=1

e We still have that the residue at s =1 of L(C; ® Gy, s) is
(essentially) (Cy, Go).
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L-functions

Extension to arbitrary cusp forms

o If G =37 cigiand Ca =) 7, djg; are two arbitrary cusp
forms, define

S

LG ® G, ) —ZquLg@gj, s)-

i=1 j=1

e We still have that the residue at s =1 of L(C; ® Gy, s) is
(essentially) (Cy, Go).

e Is there a simple formula for the coefficients of L(C; ® Cp,s) in
terms of those of C; and (7
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L-functions

Bilinearity, or lack thereof

e Not in general. We can define two subspaces of Sy(Io(D), xp).
For e € {£1}, let

S5(To(D), xp) = {3 e(ma” : c(n) = 0 if xp(n) = ~¢}
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L-functions

Bilinearity, or lack thereof

e Not in general. We can define two subspaces of Sy(Io(D), xp).
For e € {£1}, let

S5(To(D), xp) = {3 e(ma” : c(n) = 0 if xp(n) = ~¢}

e If C; and G, are both in S or S, formula (x*) gives the
formula for L(G ® Gy, s).
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L-functions

Bilinearity, or lack thereof

e Not in general. We can define two subspaces of Sy(Io(D), xp).
For e € {£1}, let

S5(To(D), xp) = { D~ c(n)a” : c(n) = 0 if xp(n) = —¢} .
e If C; and G, are both in S or S, formula (x*) gives the
formula for L(G ® Gy, s).

e If C; €S and G, €S, , then L(G; ® G, s) =0 and formula
(*x) doesn't work.
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L-functions

Bounding (C, C)

e Bad news: If g = E + C, it needs not be true that C is in
either S or S, .
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L-functions

Bounding (C, C)

e Bad news: If g = E + C, it needs not be true that C is in
either S or S, .

e But there’s a trick. Define Q*(X) = 3x7 N(Q)*AX, and
0g+(z) = E*(2) + C*(2).
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L-functions

Bounding (C, C)

e Bad news: If g = E + C, it needs not be true that C is in
either S or S, .

e But there’s a trick. Define Q*(X) = 3x7 N(Q)*AX, and
0g+(z) = E*(2) + C*(2).

e The form Q* has determinant D(Q)3, level N(Q). Also,
(C,C) =D(Q)(C*, C*).
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L-functions

Bounding (C, C)

e Bad news: If g = E + C, it needs not be true that C is in
either S or S, .

e But there’s a trick. Define Q*(X) = 3x7 N(Q)*AX, and
0g+(z) = E*(2) + C*(2).

e The form Q* has determinant D(Q)3, level N(Q). Also,
(C,C) =D(Q)(C*, C*).

e The form C* € S, (Mo(D(Q)); Xp(q))-
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L-functions

Exercise 6

e Let Q be a positive-definite quaternary form with D(Q) a
fundamental discriminant.
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L-functions

Exercise 6

e Let Q be a positive-definite quaternary form with D(Q) a
fundamental discriminant.

e Factor xp(q) = Hp\zD(Q) Xp as a product of Dirichlet characters
with prime power moduli. Let €,(Q) be the Hasse invariant of

Q/Qp.
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L-functions

Exercise 6

e Let Q be a positive-definite quaternary form with D(Q) a
fundamental discriminant.

e Factor xp(q) = Hp\zo(Q) Xp as a product of Dirichlet characters
with prime power moduli. Let €,(Q) be the Hasse invariant of

Q/Qp.

e Show that if p|2D(Q) is an odd prime and m is a positive integer
coprime to p represented by Q*, then x,(m) = €,(Q). Show that
if mis an odd integer represented by Q*, then x2(m) = —e2(Q).
Conclude that if m is represented by Q*, then either xp(m) =0 or
XD(m) =—1.
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L-functions

Explicit computational bound on Cy

e We can use formula (xx) to estimate (C*, C*).
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L-functions

Explicit computational bound on Cy

e We can use formula (xx) to estimate (C*, C*).

e We find a number B so that (g, g) > B for all newforms g € 5.
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L-functions

Explicit computational bound on Cy

e We can use formula (xx) to estimate (C*, C*).

e We find a number B so that (g, g) > B for all newforms g € 5.

o We get that

Co < \/D(Q)(C*,BC*) dim S
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L-functions

Example (1/2)

e For
Q(X,y,Z, W) = X2 + 3y2 + 3y2+ 3yW+522 +ZW—|—34W2

we have D(Q) = 6780.
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L-functions

Example (1/2)

e For
Q(x,y,z,w) = x> + 3y? 4+ 3yz + 3yw + 52° 4+ zw + 34w?

we have D(Q) = 6780.

e The space S;(I'0(6780), x6780) has four Galois-orbits of newforms
of sizes 4, 4, 40, and 1312.
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L-functions

Example (1/2)

e For
Q(x,y,z,w) = x> + 3y? 4+ 3yz + 3yw + 52° 4+ zw + 34w?

we have D(Q) = 6780.

e The space S;(I'0(6780), x6780) has four Galois-orbits of newforms
of sizes 4, 4, 40, and 1312.

e We find that for all newforms g,

(g,g) >1.019-107°.
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L-functions

Example (2/2)

e We compute the first 101700 coefficients of g« (z) and E*(z).
We use this to find that

0.01066 < (C, C) < 0.01079.

Jeremy Rouse Integers represented by QFs 27/38



L-functions

Example (2/2)

e We compute the first 101700 coefficients of 8o+ (z) and E*(z).
We use this to find that

0.01066 < (C, C) < 0.01079.

e This gives Cop < 1199.86. It follows that Q represents every odd
number larger than 8.315 - 10%°. These computations take 3
minutes and 50 seconds.
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L-functions

Example (2/2)

e We compute the first 101700 coefficients of 8o+ (z) and E*(z).
We use this to find that

0.01066 < (C, C) < 0.01079.

e This gives Cop < 1199.86. It follows that Q represents every odd
number larger than 8.315 - 10%°. These computations take 3
minutes and 50 seconds.

e Checking up to this bound requires 22 minutes and 29 seconds.
We find that @ represents all odd numbers.
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L-functions

Overview of proof

e This method exchanges the computational method for
computing Cqo with theoretical techniques.
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L-functions

Overview of proof

e This method exchanges the computational method for
computing Cqo with theoretical techniques.

e These allow us to prove some general results.
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L-functions

Overview of proof

e This method exchanges the computational method for
computing Cqo with theoretical techniques.

e These allow us to prove some general results.

e Next, I'll give an overview of the proof of Theorem 3, which
states that if D(Q) is a fundamental discriminant, and n is locally
represented by Q with n > D(Q)2+€, then n is represented.
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Proof of Theorem 3

Proof of Theorem 3 - Eisenstein part

e Let Q be a quaternary form with D(Q) a fundamental
discriminant. Recall that ro(n) = ag(n) + ac(n).
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Proof of Theorem 3

Proof of Theorem 3 - Eisenstein part

e Let Q be a quaternary form with D(Q) a fundamental
discriminant. Recall that ro(n) = ag(n) + ac(n).

e The form @ is not anisotropic at any prime. Also,

if nis locally represented.
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Proof of Theorem 3

Proof of Theorem 3 - Cusp form part

e We have |ac(n)| < Cod(n)y/n.
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Proof of Theorem 3

Proof of Theorem 3 - Cusp form part

e We have |ac(n)| < Cod(n)y/n.

e Using the Petersson inner product theory, we have

Co < \/(C, C)(dim 52(r;(D(Q)), XD(Q)))

where B = ming ; newform (&, &)-
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Proof of Theorem 3

Proof of Theorem 3 - Cusp form part

e We have |ac(n)| < Cod(n)y/n.

e Using the Petersson inner product theory, we have

Co < \/(C, C)(dim 52(r;(D(Q)), XD(Q)))’

where B = ming ; newform (&, &)-

e We can give an ineffective lower bound B > D(Q)™¢.
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Proof of Theorem 3

Proof of Theorem 3 - Petersson norm

o Letting Q* be the dual form to Q, and 6o+ = E* + C*, we get

(C,C) =D(Q)(C™, CY).
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Proof of Theorem 3

Proof of Theorem 3 - Petersson norm

o Letting Q* be the dual form to Q, and 6o+ = E* + C*, we get

(C,C) =D(Q)(C™, CY).

e Therefore,

B D(Q) 0 ow(ged(n,D(Q ))aC*
(€. = SDa) 2= Z“’< \/ o @)
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Proof of Theorem 3

Claim: (C,C) <1

e We have ac+(n) = rg+«(n) — ag=(n) and so
ac+(n)? < rg«(n)? + ag+(n)?. The first term is much bigger than
the second.
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Proof of Theorem 3

Claim: (C,C) <1

e We have ac+(n) = rg+«(n) — ag=(n) and so
ac+(n)? < rg«(n)? + ag+(n)?. The first term is much bigger than
the second.

e The exponential decay of ¢ means that the contribution of terms
with n>> D(Q) log?(D(Q)) is small (like O(D(Q)~*)).
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Proof of Theorem 3

Claim: (C,C) <1

e We have ac+(n) = rg+«(n) — ag=(n) and so
ac+(n)? < rg«(n)? + ag+(n)?. The first term is much bigger than
the second.

e The exponential decay of ¢ means that the contribution of terms
with n>> D(Q) log?(D(Q)) is small (like O(D(Q)~*)).

e The terms with n < D(Q)log?(D(Q)) are basically
cD(Q) log*(D(Q)) .

o*(”)z.

n
n=1
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Proof of Theorem 3

e Using partial summation, we can write this as

>~ 1
/1 2 Z ro-(n)? | dt.

n<min(t,cD(Q) log?(D(Q)))
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Proof of Theorem 3

e Using partial summation, we can write this as

>~ 1
/1 2 Z ro-(n)? | dt.

n<min(t,cD(Q) log?(D(Q)))

e The best way to bound }_ . ro-(n)? is to use the inequality

ZrQ*(n)2§ ZrQ*(n) -r,r:g;(r(\)*(n).

n<t n<t

Jeremy Rouse Integers represented by QFs 33/38



Proof of Theorem 3

Result

o We have 3, _, rq+(n) < max (\/E, méjéz/z)
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Proof of Theorem 3

Result

o We have > _, ro-(n) < max (ﬁ £ )

7D(Q)3/2 .
e We have
1 x < D(Q)Y?
1/
) < | st D(Q<x < D(@
max ro=\n
n<t Q W D(Q)5/6 <x< D(Q)11/12
3372

sl X 2 D@2,
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Proof of Theorem 3

Conclusion

e In the end, we find that (C, C) < 1.
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Proof of Theorem 3

Conclusion

e In the end, we find that (C, C) < 1.

e Not only that, the main contribution to (C, C) comes from very
small n (like n < D(Q)).
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Proof of Theorem 3

Summary of proof (1/2)

e We have |ac(n)| < Cod(n)y/n and

(C,C)(dim S)
Rt
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Proof of Theorem 3

Summary of proof (1/2)

e We have |ac(n)| < Cod(n)y/n and

co— /1 C)(Bdim S)

e We have (C,C) < 1, dimS; < D(Q) and B> D(Q)™°. Thus,
Co < D(Q)Y/?+e,
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Proof of Theorem 3

Summary of proof (1/2)

e We have |ac(n)| < Cod(n)y/n and

co— /1 C)(Bdim S)

e We have (C,C) < 1, dimS; < D(Q) and B> D(Q)™°. Thus,
Co < D(Q)Y/?+e,

e Hence, |ac(n)| < D(Q)Y/2tenl/2te,

Jeremy Rouse Integers represented by QFs 36/38



Proof of Theorem 3

Summary of proof (2/2)

e Recall that ag(n) > 7
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Proof of Theorem 3

Summary of proof (2/2)

e Recall that ag(n) > ”;_(;).
e Thus,
nl—e . .
rQ(n) > m - D(Q)1/2+ n1/2+ )
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Proof of Theorem 3

Summary of proof (2/2)

e Recall that ag(n) > ”;_(;).
e Thus,
1—e¢
rQ(n) > (Q) - D(Q)1/2+6n1/2+6.

e If n>> D(Q)?**¢, rg(n) > 0 and n is represented by Q.
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Proof of Theorem 3

Thank you!

e Suppose Q is a positive-definite, quaternary quadratic form, and
D(Q) is a fundamental discriminant. If Q locally represents
n > D(Q)?*¢, then n is represented by Q.
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Proof of Theorem 3

Thank you!

e Suppose Q is a positive-definite, quaternary quadratic form, and
D(Q) is a fundamental discriminant. If Q locally represents
n > D(Q)?*¢, then n is represented by Q.

e No good generalization of this result is known for forms with
D(Q) not a fundamental discriminant.
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Proof of Theorem 3

Thank you!

e Suppose Q is a positive-definite, quaternary quadratic form, and
D(Q) is a fundamental discriminant. If Q locally represents
n > D(Q)?*¢, then n is represented by Q.

e No good generalization of this result is known for forms with
D(Q) not a fundamental discriminant.

e More details can be found in the paper at
http://arxiv.org/abs/1111.0979.
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