Summary of Solvent Effects on Nucleophilic Substitution Reactions

 $S_N 1$

- Polar solvent stabilizes transition state and carbocation intermediate.
- Polar protic solvent makes nucleophile less nucleophilic and stabilizes anionic leaving group.

 $S_N 2$

- Need polar solvent to dissolve nucleophile.
- Protic solvent slows rate by solvating nucleophile
- Aprotic solvent increases rate by binding cation and thus freeing nucleophile.

Example of effect of solvent on rate of reaction:

$CH_3CH_2CH_2CH_2CH_2X$	+ NaCN	S _N 2 ►	$\rm CH_3\rm CH_2\rm CH_2\rm CH_2\rm CH_2\rm CN$	+	NaX
reaction 1					
X = Br		СН ₃ ОН 20 h Д	71 %		
reaction 2					
X = Cl		DMSO 20 min	91 %		

Summary of S_N1 versus S_N2

$S_N 1$	$S_N 2$
Bond-breaking first (in rate-determining step)	Simultaneous bond breaking and bond
	forming in rate-determining step
Need stable carbocation (3° R-X)	Need minimal steric hinderance (methyl or 1°
	R-X)
First order reaction rate	Second order reaction rate
If chiral alkyl halide \rightarrow racemic product	If chiral \rightarrow inversion of chiral center
Carbocation rearrangements possible	

If 2° R-X

Polar, protic solvent	Polar, aprotic solvent
Poor nucleophile	Strong nucleophile