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Fast Matrix Multiplication

Definition

Fast matrix multiplication algorithms require o(n®) arithmetic
operations to multiply n x n matrices.

Examples
@ Strassen [Str69]: O(n|°92 7) = O(n?81)
@ Coppersmith-Winograd [CW87]: O(n?376)
o Le Gall [LG14]: O(n?373)
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Strassen’s Algorithm

Strassen’s algorithm uses 7 multiplies for 2 x 2 multiplication

Classical Algorithm

M
Mo
Ms
My
Ms
Me
M7

{Cﬁ Ci2
Coy Co

} _ {AH A12] [
Azt Ax

Biy
By

B 2}
Bao

Strassen’s Algorithm

My
Mo
Ms
My
Ms
Me
Mz

(A1t + Azz) - (B11 + Bzp)
(A21 + Az2) - Byq
Ay - (Bi2 — Bap)
Az - (B21 — Byy)
(A11 + Ar2) - B
(A2t — A11) - (Bi1 + Bi2)
(A2 — Ag2) - (Ba1 + Boz)

My + My — Ms + M,
M + Ms
Mz + My
My — Mo + Mz + Mg
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Strassen’s Algorithm

Strassen’s algorithm uses 7 multiplies for 2 x 2 multiplication

Ci1 Crz| _ [Air Azl [Bir Biz
Co1 Cax2 Axy Axz| |B2y Ba2
Strassen’s Algorithm
For n x n matrices, we split into My = (A11 + Ag2) - (By1 + Bap)
quadrants and use recursion My = (A1 + Az) - By
My = A1 (B12 — Bz)
My = Az - (Bey — Biy)
Flop count recurrence: Ms = (At ) Be
Ms = (A21 — A1) - (B11 + Bi2)
F(n)=7-F(n/2)+ O(n2) M7 = (A2 — Az) - (B2 + B2)
F(1):1 Cy1 = My +My—Ms+ M;
F(n)=0 (n'°92 7) Ciz = Ms+Ms
Cor = M+ M,
Coo = My —My+ M+ Mg

log, 7 ~ 2.81
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Recursion allows us to focus on base case
2 x2
[311 312] [bﬁ b12] _ [011 C12]
ax ap| |b21 bop Co1 C2

multiplies 6 7 8
flop count | O (n?%8) | O (n?®") | O(n®)
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Recursion allows us to focus on base case
2x2
[311 312] [bﬁ b12] _ [011 C12]
axy ap| |bo1 bop Co1 G2

multiplies 6 7 8
flop count | OAn™R®) | O (n?®") | O(n®)
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Recursion allows us to focus on base case

2 x2
[311 812] [bﬁ b12] _ [011 C12}
a1 ax| |b21 b Co1 Cpp
multiplies 6 7 8
flop count | OAn™R®) | O (n?®") | O(n®)
3x3
ayy  aie ais| [bi1r bz bis Ci1 Ci2  Ci3
8y ax aus| |[bay bx ba| = |C1 G2 O3
asy ds2 ass b3y bsx  baz C31 C32 Cs33
multiplies 19 21 23 27

flop count | O (n?%8) | O (n?7") | O (n*®°) | O (n®)
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Searching for a base case algorithm

Finding a base case algorithm corresponds to computing an
exact CP decomposition of a particular 3D tensor

/

- H:+...+ H:

R
j’:ZUrOVrOWr

r=1

*Note the = sign: we’re not looking for an approximation
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2 x 2 matrix multiplication as a tensor operation

A.B— (311 a12> _ (bﬁ b12> _ <C11 C12> _c
a1 a» bo1  boo Co1 G2

is equivalent to

an o Ci1
aiz biz C21
T xiaxasb=7 x4 X2 = =C
a1 be1 Ci2
oo boo Co2

where J is a 4 x 4 x 4 tensor with the following slices:
1 1
T = ! T2=14 T3 = ! Ty = 1
1 1
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2 x 2 matrix multiplication as a tensor operation

A.B_— <a11 812> ' <b11 b12> _ <C11 C12> _c
a1 a» bo1  boo Co1 Co

is equivalent to

arn by Ci1
as biz C21
T xiaxab =7 x; X2 = =C
an1 be1 Ci2
an bz C22

For example:

asq by4 b4
a b b

Tox4 a;? X2 b;? = (a11 ar2 @21 az) 1 b;? = ap1by1+ageber = C
apo boo 1 b2p
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General matrix multiplication tensor

(M, P, N) means multiplying M x Pby P x N

P N N

P B

Matrix multiplication tensor J is MP x PN x MN
Number of 1’s in T is MPN

(M,P,N) = (N,M,P)=(P,N,M)=(P,M,N)=(M,N, P) = (N, P, M)
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Matrix multiplication using low-rank decomposition

Here’s the matrix multiplication as tensor operation again:
T xiaxob=c

Here’s our low-rank decomposition:

R
:T:ZUI'OVI'OW,'

r=1
Here’s an encoding of our matrix multiplication algorithm:

R R
T xiaxosb = Z(u,ov,ow,)x1a><2b = Z [(aTur) . (bTVr) W, =2¢C

r=1 r=1
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Connection between factor matrices and algorithm

Strassen’s algorithm Strassen’s factor matrices:
My = (A11 + Az) - (Biy + Bz)
10101 -1 0

My = (A1 + Az2)- By 00001 0 1
Ms = A1 (B2 — Bz) U=1o0 1 0 0 0 1 0
My = Az (B2t — Bi1) 1.0 1 0 0 -1
Ms = (A1 +As2) - B 11 0 -1 01 0
Ms = (A2t — A11) - (Bi1 + By2) v |0 0 1 0 0 1 0
M _ Aip — Ass) - (Boy + B 0 0 0 1 0 0 1

7 (A1 — Agz) - (B2t + Bzz) 10 =1 0 1 0 1
Ci1 = My +My—Ms+ M 0 0 1 -1 01
el er e
Cr = Mo+M 1 110 0 10
022 = M1 7M2+M3+M6

U, V, W matrices encode the algorithm
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Connection between factor matrices and algorithm

Strassen’s algorithm Strassen’s factor matrices:

My = (A11 + Az) - (Bi1 + Bz2)

My = (A1 + An2) - By My My My My Ms Mg M,

My = Aiq-(B12 — B») 211 1 1 1 —1 ]

My = A (B2t — Bir) u A;T 1 1

Ms = (A1 +A2) Ba An | 1 1 1 -

Ms = (A2t —Ai1) - (By1 + Bi2) By | 1 1 —1 1

Mz (A2 — Az2) - (B2t + B22) v g;? 1 ; 1 ]
By | 1 1 1 1

Ciy My + My — Ms + My Cir | 1 T i

Cia = Mg+ Ms w gf; 1 ; 1 ]

Co = Mo+ M, Col 1 -1 1 1

Cop = My — M+ M3+ Mg

U, V, W matrices encode the algorithm
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How do you solve it?

Ballard

Problem: Find U, V, Wsuchthat T = > u,ov,ow,

@ the problem is NP-complete (for general J)

@ many combinatorial formulations of the problem

o efficient numerical methods can compute low-rank
approximations
o typical approach is “alternating least squares” (ALS)
o pitfall: getting stuck at local minima > 0
o pitfall: facing ill-conditioned linear least squares problems
o pitfall: numerical solution is good only to machine precision

@ we seek exact, discrete, and sparse solutions



Alternating least squares with regularization

Most successful scheme due to Smirnov [Smi13]

Repeat
Q _ 112 12
U= arg min HT(U) -UWoVv) HF +A HU - UHF
. T|I? ||
V:argvmln HT(V)—V(W@U) "F+/\"V_V"F
Q

5 2
W= argwmin HT(W) —W(V@U)THFJF)\HW—WHF

Until convergence

Art of optimization scheme in tinkering with A, U, V, W (each iteration)
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Discovered algorithms (a subset)

Algorithm Multiplies Multiplies  Speedup per

base case (fast) (classical) recursive step o
(2,2,3) [BB15] 11 12 9% 2.89
(2,2,5) [BB15] 18 20 11% 2.89
(2,2,2) [Stre9] 7 8 14% 2.81
(2,2,4) [BB15] 14 16 14% 2.85
(3,3,3) [BB15] 23 27 17% 2.85
(2,3,3) [BB15] 15 18 20% 2.81
(2,3,4) [BB15] 20 24 20% 2.83
(2,4,4) BB15] 26 32 23% 2.82
(3,3,4) [BB15] 29 36 24% 2.82
(3,4,4) [Smi17] 38 48 26% 2.82
(3,3,6) [SmIi13] 40 54 35% 2.77
(2,2,3)* [BCRL79] 10 12 20% 2.78
(3,3,3)* [Sch81] 21 27 29% 2.77
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Square Matrix Multiplication [BB15]
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Are these algorithms faster in practice?

Ballard

Ef ective GFLOPS

1100

Square Matrix Multlphcatlon [BB15]
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Are these algorithms faster in practice?

Rectangular Matrix Multiplication [HRMvdG17]
m = n = 14400, 1 level, AB, 1 core, Actual

34 T T T T T T T T T 1

N A MWL
l I
AT

28.36 b as B3

[\
ot
[

—— (2, 2,2) —%— (2,3,2) —e— (2,3,4) ——— (2,4,3)

(2,5,2) — —o— - (3,2,2) —8— (3,2,3) —e— (3,2,4)
— ——-(3,3,2) — =—-(3,3,3) —e— (3,3,6) —e— (3,4,2)
—=— (3,4,3) —+— (3,5,3) —e— (3,6,3) —+— (4,2,2)
— —e— - (4,2,3) ——a— - (4,2,4) — —— - (4,3,2) — —o— - (4,3,3)

Effective GFLOPS (2 -m - n - k/time)

e - (4,4,2) — —— = (5,2,2) —&— (6,3,3) == == BLIS

2 A
0123456789101112
k 108

Ballard 16



How big can we go?

@ Current numerical techniques are hitting their limits

e tensor size grows like N6 if M = P = N
e number of variables grows faster than 3N* if M = P = N

@ Nothing new has been found for (4,4,4)
e Strassen’s (2,2,2) algorithm can be used twice

@ Can we exploit properties particular to matrix
multiplication?
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Cyclic symmetry of square matrix multiplication

Let M be the matrix multiplication tensor for M = P =N
M has cyclic symmetry:

M = Myjj = Migj

Ballard 18



Cyclic symmetry of square matrix multiplication

Let M be the matrix multiplication tensor for M = P =N
M has cyclic symmetry:

M = Myjj = Migj

This means if U,V, W is a solution,
thensoare W,U,Vand V,W, U
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Cyclic symmetry of square matrix multiplication

Let M be the matrix multiplication tensor for M = P =N
M has cyclic symmetry:

M = Myjj = Migj

This means if U,V, W is a solution,
thensoare W,U,Vand V,W, U

Is this property reflected in the low-rank decomposition?

Zu,ov,owrEZW,OU,OV,EZWOW,OU,?
r r r
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Cyclic invariance of Strassen’s algorithm

1 0 1 0 1 -1 0
u_| 0 0 0o 0o 1 0 i
“l o 1 0o 0o o 1 o0
1 1 0 1 0 0 -1

1 1 0 -1 0 1 0
v_| 0 0 1t 0 0 1 0
“l o o o 1 0o o0
1 0 -1 0 1 0 1

1 0 0 1 -1 0 1
0o 1 0 1 0 0 O
W=190o o 1 0 1 0 o
1 1 1 0 0 1 0

If you cyclically permute U, V, W,
you get the same rank-one components in a different order
Ballard



Searching for cyclic-invariant solutions

R=S8+3T

Ballard 20



Cyclic-invariant decompositions

Decomposition with no constraints

R
j’:ZuI’OVrOWr

r=1
Decomposition with cyclic-invariant constraint

S T
7:Zasoasoas+2(btOCtOdt+dzOszCt+ctOdtObt)
s=1 t=1

Number of variables reduced by factor of 3,
but expression is no longer multilinear (not linear in A)
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New rank-23 cyclic-invariant solutions for (3, 3, 3)

Ballard

A B C D

U=(A B C D)
V=(A D B C)
W= (A cCD B)
Rank-23 is the best known exact rank for (3, 3, 3);

many previous solutions exist but none are cyclic invariant

We computed cyclic-invariant solutions with S =25, 11



What about (4,4,4)?

@ Performing two steps of Strassen’s algorithm yields
rank-49 cyclic-invariant solution

@ No known exact decomposition of rank < 49
o cyclic invariant or otherwise
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What about (4,4,4)?

@ Performing two steps of Strassen’s algorithm yields
rank-49 cyclic-invariant solution

@ No known exact decomposition of rank < 49
o cyclic invariant or otherwise

@ No success yet in computing cyclic-invariant solutions
o but the truth is out there

Ballard 23



Ballard

@ Discovering fast matrix multiplication algorithms
corresponds to computing an exact CP decomposition

@ Any new algorithm can be implemented efficiently

@ Exploiting symmetry of matrix multiplication can reduce the
size of the problem, want to tackle (4, 4,4)

@ Still exploring how to use more structure to scale up to
larger dimensions



Thank You!

Discovering Fast Matrix Multiplication

Algorithms via Tensor Decomposition

Grey Ballard

WAKE FOREST

UNIVERSITY

ballard@wfu.edu
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More structure...

Ballard

Transposition symmetry
bk = ti

where
TI:7X1PX2P><3P

and P is the “vec-permutation” matrix



More structure...

Transposition symmetry
bk = ti

where
TI:7><1PX2P><3P

and P is the “vec-permutation” matrix
This is derived from the fact that

AB=C
implies

B’AT = ¢’

Ballard 26



More structure...

Multiplication invariance
T =T x4 (Y*T ® x) X5 (Z*T ® Y) X3 (Z*T ® x)

where X, Y, Z are nonsingular matrices

Ballard 27



More structure...

Ballard

Multiplication invariance
T =T x4 (Y*T ® x) X5 (Z*T ® Y) X3 (Z*T ® x)

where X, Y, Z are nonsingular matrices

This is derived from the fact that
AB=C

meies <XAY—1) (YBz—1) = (xcz—1)



Example algorithm: (4,2, 4)

Ballard

Partition matrices like this:

A1 Agp Ci1 Ci2 Cy3 Cya
Azi A [31 1 Bi2 Biz By 4] _|Car G2 Caz Ca4
Az1 Asz2| |Bay Bop Boz Bg Czt Cz2 Czz Cm
Arr Ag Cs1 Cap Cuz Cuys

© Take 26 linear combos of A;’s according to U (68 adds)
O Take 26 linear combos of Bj’s according to V (52 adds)
© Perform 26 multiplies (recursively)

O Take linear combos of outputs to form Cj’s acc. to W (69
adds)

Classical algorithm performs 32 multiplies yielding a possible speedup of
23% per step
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