Discovering Fast Matrix Multiplication

Algorithms via Tensor Decomposition

Grey Ballard

WAKE FOREST

UNIVERSITY

SIAM Conference on Computational Science & Engineering
March 1, 2017

Collaborators

This is joint work with...
@ Austin Benson - Stanford University
@ Christian Ikenmeyer - Max-Planck Institute for Informatics
@ Tammy Kolda - Sandia National Laboratories
@ JM Landsberg - Texas A&M University
@ Kathryn Rouse - Wake Forest University
@ Nick Ryder - University of California Berkeley

Ballard 4

Fast Matrix Multiplication

Definition

Fast matrix multiplication algorithms require o(n®) arithmetic
operations to multiply n x n matrices.

Examples
@ Strassen [Str69]: O(n|°92 7) = O(n?81)
@ Coppersmith-Winograd [CW87]: O(n?376)
o Le Gall [LG14]: O(n?373)

Ballard 5

Strassen’s Algorithm

Strassen’s algorithm uses 7 multiplies for 2 x 2 multiplication

Classical Algorithm

M
Mo
Ms
My
Ms
Me
M7

{Cﬁ Ci2
Coy Co

} _ {AH A12] [
Azt Ax

Biy
By

B 2}
Bao

Strassen’s Algorithm

My
Mo
Ms
My
Ms
Me
Mz

(A1t + Azz) - (B11 + Bzp)
(A21 + Az2) - Byq
Ay - (Bi2 — Bap)
Az - (B21 — Byy)
(A11 + Ar2) - B
(A2t — A11) - (Bi1 + Bi2)
(A2 — Ag2) - (Ba1 + Boz)

My + My — Ms + M,
M + Ms
Mz + My
My — Mo + Mz + Mg

Ballard 6

Strassen’s Algorithm

Strassen’s algorithm uses 7 multiplies for 2 x 2 multiplication

Ci1 Crz| _ [Air Azl [Bir Biz
Co1 Cax2 Axy Axz| |B2y Ba2
Strassen’s Algorithm
For n x n matrices, we split into My = (A11 + Ag2) - (By1 + Bap)
quadrants and use recursion My = (A1 + Az) - By
My = A1 (B12 — Bz)
My = Az - (Bey — Biy)
Flop count recurrence: Ms = (At) Be
Ms = (A21 — A1) - (B11 + Bi2)
F(n)=7-F(n/2)+ O(n2) M7 = (A2 — Az) - (B2 + B2)
F(1):1 Cy1 = My +My—Ms+ M;
F(n)=0 (n'°92 7) Ciz = Ms+Ms
Cor = M+ M,
Coo = My —My+ M+ Mg

log, 7 ~ 2.81

Ballard 6

Recursion allows us to focus on base case
2 x2
[311 312] [bﬁ b12] _ [011 C12]
ax ap| |b21 bop Co1 C2

multiplies 6 7 8
flop count | O (n?%8) | O (n?®") | O(n®)

Ballard 7

Recursion allows us to focus on base case
2x2
[311 312] [bﬁ b12] _ [011 C12]
axy ap| |bo1 bop Co1 G2

multiplies 6 7 8
flop count | OAn™R®) | O (n?®") | O(n®)

Ballard 7

Recursion allows us to focus on base case

2 x2
[311 812] [bﬁ b12] _ [011 C12}
a1 ax| |b21 b Co1 Cpp
multiplies 6 7 8
flop count | OAn™R®) | O (n?®") | O(n®)
3x3
ayy aie ais| [bi1r bz bis Ci1 Ci2 Ci3
8y ax aus| |[bay bx ba| = |C1 G2 O3
asy ds2 ass b3y bsx baz C31 C32 Cs33
multiplies 19 21 23 27

flop count | O (n?%8) | O (n?7") | O (n*®°) | O (n®)

Ballard 7

Searching for a base case algorithm

Finding a base case algorithm corresponds to computing an
exact CP decomposition of a particular 3D tensor

/

- H:+...+ H:

R
j’:ZUrOVrOWr

r=1

*Note the = sign: we’re not looking for an approximation

Ballard 8

2 x 2 matrix multiplication as a tensor operation

A.B— (311 a12> _ (bﬁ b12> _ <C11 C12> _c
a1 a» bo1 boo Co1 G2

is equivalent to

an o Ci1
aiz biz C21
T xiaxasb=7 x4 X2 = =C
a1 be1 Ci2
oo boo Co2

where J is a 4 x 4 x 4 tensor with the following slices:
1 1
T = ! T2=14 T3 = ! Ty = 1
1 1

Ballard 9

2 x 2 matrix multiplication as a tensor operation

A.B_— <a11 812> ' <b11 b12> _ <C11 C12> _c
a1 a» bo1 boo Co1 Co

is equivalent to

arn by Ci1
as biz C21
T xiaxab =7 x; X2 = =C
an1 be1 Ci2
an bz C22

For example:

asq by4 b4
a b b

Tox4 a;? X2 b;? = (a11 ar2 @21 az) 1 b;? = ap1by1+ageber = C
apo boo 1 b2p

Ballard 9

General matrix multiplication tensor

(M, P, N) means multiplying M x Pby P x N

P N N

P B

Matrix multiplication tensor J is MP x PN x MN
Number of 1’s in T is MPN

(M,P,N) = (N,M,P)=(P,N,M)=(P,M,N)=(M,N, P) = (N, P, M)

Ballard 10

Matrix multiplication using low-rank decomposition

Here’s the matrix multiplication as tensor operation again:
T xiaxob=c

Here’s our low-rank decomposition:

R
:T:ZUI'OVI'OW,'

r=1
Here’s an encoding of our matrix multiplication algorithm:

R R
T xiaxosb = Z(u,ov,ow,)x1a><2b = Z [(aTur) . (bTVr) W, =2¢C

r=1 r=1

Ballard 1

Connection between factor matrices and algorithm

Strassen’s algorithm Strassen’s factor matrices:
My = (A11 + Az) - (Biy + Bz)
10101 -1 0

My = (A1 + Az2)- By 00001 0 1
Ms = A1 (B2 — Bz) U=1o0 1 0 0 0 1 0
My = Az (B2t — Bi1) 1.0 1 0 0 -1
Ms = (A1 +As2) - B 11 0 -1 01 0
Ms = (A2t — A11) - (Bi1 + By2) v |0 0 1 0 0 1 0
M _ Aip — Ass) - (Boy + B 0 0 0 1 0 0 1

7 (A1 — Agz) - (B2t + Bzz) 10 =1 0 1 0 1
Ci1 = My +My—Ms+ M 0 0 1 -1 01
el er e
Cr = Mo+M 1 110 0 10
022 = M1 7M2+M3+M6

U, V, W matrices encode the algorithm

Ballard 12

Connection between factor matrices and algorithm

Strassen’s algorithm Strassen’s factor matrices:

My = (A11 + Az) - (Bi1 + Bz2)

My = (A1 + An2) - By My My My My Ms Mg M,

My = Aiq-(B12 — B») 211 1 1 1 —1]

My = A (B2t — Bir) u A;T 1 1

Ms = (A1 +A2) Ba An | 1 1 1 -

Ms = (A2t —Ai1) - (By1 + Bi2) By | 1 1 —1 1

Mz (A2 — Az2) - (B2t + B22) v g;? 1 ; 1]
By | 1 1 1 1

Ciy My + My — Ms + My Cir | 1 T i

Cia = Mg+ Ms w gf; 1 ; 1]

Co = Mo+ M, Col 1 -1 1 1

Cop = My — M+ M3+ Mg

U, V, W matrices encode the algorithm

Ballard 12

How do you solve it?

Ballard

Problem: Find U, V, Wsuchthat T = > u,ov,ow,

@ the problem is NP-complete (for general J)

@ many combinatorial formulations of the problem

o efficient numerical methods can compute low-rank
approximations
o typical approach is “alternating least squares” (ALS)
o pitfall: getting stuck at local minima > 0
o pitfall: facing ill-conditioned linear least squares problems
o pitfall: numerical solution is good only to machine precision

@ we seek exact, discrete, and sparse solutions

Alternating least squares with regularization

Most successful scheme due to Smirnov [Smi13]

Repeat
Q _ 112 12
U= arg min HT(U) -UWoVv) HF +A HU - UHF
. T|I? ||
V:argvmln HT(V)—V(W@U) "F+/\"V_V"F
Q

5 2
W= argwmin HT(W) —W(V@U)THFJF)\HW—WHF

Until convergence

Art of optimization scheme in tinkering with A, U, V, W (each iteration)

Ballard 14

Discovered algorithms (a subset)

Algorithm Multiplies Multiplies Speedup per

base case (fast) (classical) recursive step o
(2,2,3) [BB15] 11 12 9% 2.89
(2,2,5) [BB15] 18 20 11% 2.89
(2,2,2) [Stre9] 7 8 14% 2.81
(2,2,4) [BB15] 14 16 14% 2.85
(3,3,3) [BB15] 23 27 17% 2.85
(2,3,3) [BB15] 15 18 20% 2.81
(2,3,4) [BB15] 20 24 20% 2.83
(2,4,4) BB15] 26 32 23% 2.82
(3,3,4) [BB15] 29 36 24% 2.82
(3,4,4) [Smi17] 38 48 26% 2.82
(3,3,6) [SmIi13] 40 54 35% 2.77
(2,2,3)* [BCRL79] 10 12 20% 2.78
(3,3,3)* [Sch81] 21 27 29% 2.77

Ballard 15

C-
)
O
—
o
@©
| .
o
=
| -
)
—
(%))
©
——
N
S
<
5=
| -
o
=
©
O
(%9}
(O]
<
—
()
—
<

Square Matrix Multiplication [BB15]

P e S

x G ¢

Am%u_ 1

c

8000

,..,_zzwz/) \

7000

V) _m,
¥ '
’

3000 4000 5000 6000
Dimension (n)

2000

11%00

SdO149 8AldaY3

Ballard

Are these algorithms faster in practice?

Ballard

Ef ective GFLOPS

1100

Square Matrix Multlphcatlon [BB15]

X IR IR

.

XAl .c%‘ -5 <K

I s - S R R A
A"X‘\: 6'/: :e B/
SO RN

SV ’

. =% MKL
0 -A-STRASSEN
-x-BINI

-V-<3,2,3>

<3,3,3>
-O-<4,2,4>
‘ -O- <3,3,6>

2000 3000 4000 5000 6000 7000 8000
Dimension (n)

Are these algorithms faster in practice?

Rectangular Matrix Multiplication [HRMvdG17]
m = n = 14400, 1 level, AB, 1 core, Actual

34 T T T T T T T T T 1

N A MWL
l I
AT

28.36 b as B3

[\
ot
[

—— (2, 2,2) —%— (2,3,2) —e— (2,3,4) ——— (2,4,3)

(2,5,2) — —o— - (3,2,2) —8— (3,2,3) —e— (3,2,4)
— ——-(3,3,2) — =—-(3,3,3) —e— (3,3,6) —e— (3,4,2)
—=— (3,4,3) —+— (3,5,3) —e— (3,6,3) —+— (4,2,2)
— —e— - (4,2,3) ——a— - (4,2,4) — —— - (4,3,2) — —o— - (4,3,3)

Effective GFLOPS (2 -m - n - k/time)

e - (4,4,2) — —— = (5,2,2) —&— (6,3,3) == == BLIS

2 A
0123456789101112
k 108

Ballard 16

How big can we go?

@ Current numerical techniques are hitting their limits

e tensor size grows like N6 if M = P = N
e number of variables grows faster than 3N* if M = P = N

@ Nothing new has been found for (4,4,4)
e Strassen’s (2,2,2) algorithm can be used twice

@ Can we exploit properties particular to matrix
multiplication?

Ballard 17

Cyclic symmetry of square matrix multiplication

Let M be the matrix multiplication tensor for M = P =N
M has cyclic symmetry:

M = Myjj = Migj

Ballard 18

Cyclic symmetry of square matrix multiplication

Let M be the matrix multiplication tensor for M = P =N
M has cyclic symmetry:

M = Myjj = Migj

This means if U,V, W is a solution,
thensoare W,U,Vand V,W, U

Ballard 18

Cyclic symmetry of square matrix multiplication

Let M be the matrix multiplication tensor for M = P =N
M has cyclic symmetry:

M = Myjj = Migj

This means if U,V, W is a solution,
thensoare W,U,Vand V,W, U

Is this property reflected in the low-rank decomposition?

Zu,ov,owrEZW,OU,OV,EZWOW,OU,?
r r r

Ballard 18

£
L=
—
—
o
k=)
Y]
wm
c
o
n
n
©
S
h—
w
[V—
(@)
()]
(©)]
c
8
p -
©
>
=
9
(&)
>
®)

Ballard

Cyclic invariance of Strassen’s algorithm

1 0 1 0 1 -1 0
u_| 0 0 0o 0o 1 0 i
“l o 1 0o 0o o 1 o0
1 1 0 1 0 0 -1

1 1 0 -1 0 1 0
v_| 0 0 1t 0 0 1 0
“l o o o 1 0o o0
1 0 -1 0 1 0 1

1 0 0 1 -1 0 1
0o 1 0 1 0 0 O
W=190o o 1 0 1 0 o
1 1 1 0 0 1 0

If you cyclically permute U, V, W,
you get the same rank-one components in a different order
Ballard

Searching for cyclic-invariant solutions

R=S8+3T

Ballard 20

Cyclic-invariant decompositions

Decomposition with no constraints

R
j’:ZuI’OVrOWr

r=1
Decomposition with cyclic-invariant constraint

S T
7:Zasoasoas+2(btOCtOdt+dzOszCt+ctOdtObt)
s=1 t=1

Number of variables reduced by factor of 3,
but expression is no longer multilinear (not linear in A)

Ballard 21

New rank-23 cyclic-invariant solutions for (3, 3, 3)

Ballard

A B C D

U=(A B C D)
V=(A D B C)
W= (A cCD B)
Rank-23 is the best known exact rank for (3, 3, 3);

many previous solutions exist but none are cyclic invariant

We computed cyclic-invariant solutions with S =25, 11

What about (4,4,4)?

@ Performing two steps of Strassen’s algorithm yields
rank-49 cyclic-invariant solution

@ No known exact decomposition of rank < 49
o cyclic invariant or otherwise

Ballard 23

What about (4,4,4)?

@ Performing two steps of Strassen’s algorithm yields
rank-49 cyclic-invariant solution

@ No known exact decomposition of rank < 49
o cyclic invariant or otherwise

@ No success yet in computing cyclic-invariant solutions
o but the truth is out there

Ballard 23

Ballard

@ Discovering fast matrix multiplication algorithms
corresponds to computing an exact CP decomposition

@ Any new algorithm can be implemented efficiently

@ Exploiting symmetry of matrix multiplication can reduce the
size of the problem, want to tackle (4, 4,4)

@ Still exploring how to use more structure to scale up to
larger dimensions

Thank You!

Discovering Fast Matrix Multiplication

Algorithms via Tensor Decomposition

Grey Ballard

WAKE FOREST

UNIVERSITY

ballard@wfu.edu

Ballard 25

ballard@wfu.edu

More structure...

Ballard

Transposition symmetry
bk = ti

where
TI:7X1PX2P><3P

and P is the “vec-permutation” matrix

More structure...

Transposition symmetry
bk = ti

where
TI:7><1PX2P><3P

and P is the “vec-permutation” matrix
This is derived from the fact that

AB=C
implies

B’AT = ¢’

Ballard 26

More structure...

Multiplication invariance
T =T x4 (Y*T ® x) X5 (Z*T ® Y) X3 (Z*T ® x)

where X, Y, Z are nonsingular matrices

Ballard 27

More structure...

Ballard

Multiplication invariance
T =T x4 (Y*T ® x) X5 (Z*T ® Y) X3 (Z*T ® x)

where X, Y, Z are nonsingular matrices

This is derived from the fact that
AB=C

meies <XAY—1) (YBz—1) = (xcz—1)

Example algorithm: (4,2, 4)

Ballard

Partition matrices like this:

A1 Agp Ci1 Ci2 Cy3 Cya
Azi A [31 1 Bi2 Biz By 4] _|Car G2 Caz Ca4
Az1 Asz2| |Bay Bop Boz Bg Czt Cz2 Czz Cm
Arr Ag Cs1 Cap Cuz Cuys

© Take 26 linear combos of A;’s according to U (68 adds)
O Take 26 linear combos of Bj’s according to V (52 adds)
© Perform 26 multiplies (recursively)

O Take linear combos of outputs to form Cj’s acc. to W (69
adds)

Classical algorithm performs 32 multiplies yielding a possible speedup of
23% per step

References |

[

=) (=) (=)) &)

Austin R. Benson and Grey Ballard.
A framework for practical parallel fast matrix multiplication.

D. Bini, M. Capovani, F. Romani, and G. Lotti.
O(n2‘7799) complexity for n x n approximate matrix multiplication.

D. Coppersmith and S. Winograd.
Matrix multiplication via arithmetic progressions.

Jianyu Huang, Leslie Rice, Devin A. Matthews, and Robert van de Geijn.
Generating families of practical fast matrix multiplication algorithms.

Frangois Le Gall.
Powers of tensors and fast matrix multiplication.

A. Schénhage.
Partial and total matrix multiplication.

29

References Il

@ A.V. Smirnov.

The bilinear complexity and practical algorithms for matrix multiplication.

Alexey Smirnov.
Several bilinear algorithms for matrix multiplication.

V. Strassen.
Gaussian elimination is not optimal.

30

