
MINIMAL TORSION CURVES IN GEOMETRIC ISOGENY CLASSES

ABBEY BOURDON, NINA RYALLS, AND LORI D. WATSON

Abstract. Let E/Q be a non-CM elliptic curve and let E denote the collection of all elliptic curves
geometrically isogenous to E. In this paper, we introduce the problem of studying minimal torsion
curves in E , which are elliptic curves E′ ∈ E attaining a point of prime-power order in least possible
degree. If ` is an odd prime and k is an integer larger than 3, we show there exists E0/Q ∈ E
and a cyclic subgroup C in E0 of order ` such that E0/C produces a point on X1(`k) in least odd
degree among all odd degree points associated to curves in E . It is somewhat surprising that such
a uniform construction exists given the various groups that can arise as the image of the `-adic
Galois representation associated to E. Our work concludes with a study of minimal torsion curves
within the geometric isogeny class of an elliptic curve with complex multiplication.

1. Introduction

Let E/Q be an elliptic curve. In 1922, Mordell [30] proved that the collection of points on E
with coordinates in Q forms a finitely generated abelian group. In particular, the torsion subgroup
of E(Q) is a finite abelian group, and the groups which occur as E(Q)tors are know due to work
of Mazur [29] in 1977. The past decade has seen a renewed interest in studying torsion points of
rational elliptic curves, from characterizing the groups which arise as torsion subgroups of E/Q
under base extension to number fields of higher degree (see, for example, [28, 31, 20, 22, 13]) to
classifying images of `-adic Galois representations associated to E/Q; see [32, 26, 38, 27]. This
prior work can be leveraged to begin to understand a new class of elliptic curves, namely, those
geometrically isogenous to an elliptic curve E/Q.

Let E/Q be an elliptic curve, and let E denote the collection of all elliptic curves geometrically
isogenous to E. That is, for any E′ ∈ E , there exists an isogeny ϕ : E → E′ defined over Q. This
class of elliptic curves has been studied in several prior works [12, 9, 19]. In this paper, our central
questions are the following:

(1) What is the least degree of a point on X1(`
k) associated to an elliptic curve in E?

(2) What elliptic curve(s) in E attain this point on X1(`
k) of least possible degree?

To answer these questions it is necessary to determine whether a point of least-possible degree on
X1(`

k) can correspond to an elliptic curve E′ ∈ E with j(E′) ∈ Q, or whether it is necessary to work
with an elliptic curve with j-invariant defining an extension of larger degree, but with exceptional
arithmetic (such as low-degree prime-power isogenies) which allow it to produce a point on X1(`

k)
in lower degree than any elliptic curve in E with rational j-invariant. In fact both cases can arise;
see Remark 1.4.

One motivation for studying torsion points on elliptic curves in geometric isogeny classes is a
connection to Serre’s Uniformity Conjecture, which states that there is a constant C such that the
mod ` Galois representation associated to any elliptic curve over Q without complex multiplication
(CM) is surjective for primes ` > C. This originally appeared as a question in a 1972 paper of
Serre [33], but it has since been formally conjectured by both Sutherland [37] and Zywina [39].
Recent work of the first author and Najman [9] identifies a connection between this conjecture and
sporadic points on modular curves associated to elliptic curves in the geometric isogeny class of an
elliptic curve with rational j-invariant. We say a point x ∈ X1(`

k) is sporadic if there are only
finitely many points of degree at most deg(x).
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Theorem 1.1 (Bourdon, Najman [9]). Suppose there exist only finitely many isogeny classes E
containing a non-CM elliptic curve E/Q that give rise to a sporadic point on X1(`

2) for some
prime `. Then Serre’s Uniformity Conjecture holds.

Remark 1.2. Though the statement of [9, Theorem 1.2] concerns isogeny classes of non-CM Q-
curves, the proof shows it is enough to have finiteness of isogeny classes which contain a non-CM
elliptic curve E/Q. Indeed, we find that for an elliptic curve E/Q whose mod ` Galois representation
lands in the normalizer of a non-split Cartan subgroup, there is an elliptic curve E′ ∈ E producing
a point on X1(`

2) of degree at most 2`(`2−1); this point is sporadic for primes sufficiently large by
work of Abramovich [1, Theorem 0.1] and Frey [18, Proposition 2]. It is worth pointing out that E
itself does not correspond to a sporadic point on X1(`

2), as proved by Ejder [17].

We say an elliptic curve E′ ∈ E is minimal for X1(`
k) if it attains a point on X1(`

k) in least
possible degree among all elliptic curves in E . If E′ is minimal for X1(`

k) for all k ∈ Z+, we say E′ is
a minimal torsion curve for the prime `, denoted Emin. Given an isogeny class and fixed prime
`, there can exist infinitely many elliptic curves which are minimal for some X1(`

k). For example,
if the `-adic Galois representation of a non-CM elliptic curve E/Q is surjective, then for any cyclic
subgroup C of order a power of ` the elliptic curve E/C is minimal for X1(`

k) for k sufficiently
large; see Remark 3.5. However, there can exist at most finitely many minimal torsion curves for
` since any such curve must in particular be minimal for X1(`), and hence have j-invariant in an
extension of bounded degree; see Proposition 3.3. Our first result shows that if we consider only
points on X1(`

k) of odd degree, where ` is an odd prime, then minimal torsion curves exist within
non-CM isogeny classes unless ` = 3 and E is one of 4 exceptional classes. Moreover, in each case,
there exists a uniform construction for E′ ∈ E which yields this point of minimal odd degree.

Theorem 1.3. Let E/Q be a non-CM elliptic curve and let E denote the corresponding geometric
isogeny class. Suppose ` is an odd prime number and k ≥ 4 is an integer. There exists E1/Q ∈ E
and a cyclic subgroup C ≤ E1 of order ` such that E1/C gives a point of least possible odd degree
on X1(`

k) among all odd degree points associated to E. We may include the values 1 ≤ k ≤ 3 unless
` = 3 and E contains an elliptic curve over Q with 3-adic image 9.12.0.2, 9.36.0.2, 9.36.0.7, or
9.36.0.8.

Remark 1.4. Note that j(E1/C) need not be in Q, and for certain cases, the point of least odd
degree associated to E cannot be constructed from an elliptic curve having rational j-invariant. In
particular, the proof of Theorem 1.3 shows that in order to produce points on X1(`

k) of least odd
degree among points associated to E , one cannot use an elliptic curve with j-invariant in Q if ` = 7
and j(E) = 33 · 5 · 75/27 or if ` = 3 and E contains an elliptic curve over Q with 3-adic image
9.12.0.2, 9.36.0.2, 9.36.0.7, or 9.36.0.8. We may choose E1 and C such that j(E1/C) ∈ Q in all
other cases.

In order to prove Theorem 1.3, we analyze each geometric isogeny class and determine the least
possible odd degree in which an elliptic curve E ∈ E can give a point on X1(`

k). We obtain divisi-
bility conditions which are best-possible for k sufficiently large: see Proposition 4.1 and Proposition
5.1. By comparing across all possible isogeny classes and ruling out certain points of order a power
of 2, we attain the following result, which strengthens Proposition 4.1 in [9].

Theorem 1.5. Let E/Q be a non-CM elliptic curve and let E denote the corresponding geometric
isogeny class. If E′ ∈ E and x = [E′, P ′] ∈ X1(`

k) is a point of odd degree, then ` ∈ {2, 3, 5, 7, 11, 13}
and the following divisibility conditions hold and are best possible without placing restrictions on E:

(1) If ` = 13, then 3 · 132k−2 | deg(x).
(2) If ` = 11, then 5 · 112k−2 | deg(x).
(3) If ` = 7 and j(E) 6= 33 · 5 · 75/27, then 72k−2 | deg(x).
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(4) If ` = 7 and j(E) = 33 · 5 · 75/27, then 9 · 7max(0,2k−3) | deg(x).

(5) If ` = 5, then 5max(0,2k−3) | deg(x).

(6) If ` = 3, then 3max(0,2k−4) | deg(x).
(7) If ` = 2, then k ≤ 3 and 1 | deg(x).

Our investigation begins with a more general divisibility condition for degrees of torsion points
on elliptic curves within a fixed geometric isogeny classes, which plays a key role in the proofs of
Theorem 1.3 and Theorem 1.5, and strengthens Lemma 4.6 in [9]. Here, ρE,`∞ denotes the `-adic
Galois representation associated to E.

Proposition 1.6. Let E/Q be a non-CM elliptic curve, and let E denote the corresponding geo-
metric isogeny class. Suppose ` is a prime number, and set d := ord`([GL2(Z`) : im ρE,`∞ ]). If

E′ ∈ E, then the degree of any point on X1(`
k) associated to E′ is divisible by{

deg(x) · `max(0,2k−2−d) if ` is odd,

deg(x) · `max(0,2k−3−d) if ` = 2,

for some x ∈ X1(`) associated to E or E/C where C is the kernel of a Q-rational cyclic `-isogeny.
In particular, if E has no `-isogeny over Q, then the latter case cannot occur.

Since deg(X1(`
k) → X1(`)) = `2k−2 for ` odd and deg(X1(2

k) → X1(2)) = 22k−3, these lower
bounds are best-possible whenever ord`([GL2(Z`) : im ρE,`∞ ]) = 0, and in this case a minimal
torsion curve with j-invariant in Q exists. This holds in many cases; see, for example, Lemma 4.2.
We can also show the divisibility conditions of Proposition 1.6 are best-possible when the `-adic
Galois representation of E has level `, though the minimal torsion curve need not have j-invariant
in Q; see Proposition 7.1. However, there are certain isogeny classes for which there does not exist a
point on X1(`

k) in least degree allowed by Proposition 1.6. For example, by Proposition 5.1, if ` = 3
and there exists E1 ∈ E with im ρE1,3∞ = 9.36.0.6, then the degree of a point on X1(3

k) associated

to an elliptic curve in E is divisible by 2 · 3max(0,2k−4) or 3max(0,2k−3) provided k ≥ 2. Since there
exists x ∈ X1(3) of degree 1 associated to E1, this strengthens the lower bound in Proposition 1.6
by a factor of 2 or 3, respectively. The isogeny class of E1 also illustrates that, away from points
odd degree, we cannot always produce points on X1(`

k) of least degree among those from a fixed
isogeny class by taking the quotient of a rational elliptic curve by a cyclic subgroup of order `. See
Remark 5.4 for details.

In the final section of our paper, we consider minimal torsion curves within CM isogeny classes,
building on work of the first author and Pete Clark [5]. Whether or not a minimal torsion curve
exists for a given prime ` depends on whether ` is split, inert, or ramified in the associated CM
field.

Theorem 1.7. Let K be an imaginary quadratic field, and suppose ` is an odd prime. Let E be
an elliptic curve with CM by the full ring of integers in K, and let E denote the geometric isogeny
class of E. Then a minimal torsion curve exists for E if and only if ` is split in K.

As in the non-CM case, this theorem is a consequence of attaining sharp divisibility conditions for
the degrees of points on X1(`

k) coming from elliptic curves in E . See Propositions 8.1,8.2, and 8.4.
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2. Background

2.1. Galois Representations. Let E be an elliptic curve defined over a number field F , and let
` be a prime number. The elements of the absolute Galois group of F , denoted GalF , induce a
natural automorphism of points of E(F ) with order dividing `k, denoted E[`k]. This action is
recorded in the mod `k Galois representation associated to E, which can be made to have
image in GL2(Z/`kZ) by choosing a basis for E[`k]:

ρE,`k GalF → Aut(E[`k]) ∼= GL2(Z/`kZ).

By choosing compatible bases, the mod `k Galois representations fit together to give the `-adic
Galois representation associated to E,

ρE,`∞ GalF → GL2(Z`),

which gives the Galois action on all points of order a power of `.
All known images of the mod ` Galois representations associated to a non-CM elliptic curve

over Q are given in Tables 1 and 2 of [22]. This list is complete for ` ≤ 13 by [39, 37, 3, 2], and
it has been conjectured to be complete for all `; see work of Sutherland [37, Conjecture 1.1] and
Zywina [39, Conjecture 1.12]. Unconditionally, we have the following result, where Cns(`) denotes
a non-split Cartan subgroup of GL2(Z/`Z) with normalizer C+

ns(`).

Proposition 2.1. Suppose E/Q is a non-CM elliptic curve and ` is prime. If im ρE,` is not equal
to GL2(Z/`Z) or any group appearing in Table 1 and 2 of [22], then ` ≥ 17 and:

(1) If ` ≡ 1 (mod 3), then im ρE,` is conjugate to C+
ns(`).

(2) If ` ≡ 2 (mod 3), then im ρE,` is conjugate to C+
ns(`) or to the subgroup

{a3 : a ∈ Cns(`)} ∪ {( 1 0
0 −1 ) · a3 : a ∈ Cns(`)}.

Proof. See [40, Proposition 1.13] and [22, Theorem 3.2]. �

The classification of 2-adic images associated to elliptic curves over Q is complete due to work of
Rouse and Zureick-Brown [32], and there has been significant recent progress towards the classifica-
tion of `-adic images for odd primes `; see [26, 38] for elliptic curves without complex multiplication
and [27] for the CM case.

Throughout we use the current LMFDB notation to refer to subgroups of GL2(Z/`Z) and
GL2(Z`), which matches that of [37] and [26].

2.2. Elliptic Curves with an Isogeny. Suppose E/F is an elliptic curve with an F -rational
cyclic N -isogeny. That is, there exists P ∈ E of order N such that for any σ ∈ GalF , there is some
α ∈ (Z/NZ)× for which σ(P ) = αP . This defines a homomorphism called the isogeny character:

χ : GalF → (Z/NZ)×

σ 7→ α.

Proposition 2.2. Let N ≥ 3 be an integer, and let E/F be an elliptic curve with an F -rational

cyclic isogeny of degree N . There is an extension L/F with [L : F ] | ϕ(N)
2 and a quadratic twist E′

of E/L such that E′(L) has a point of order N .

Proof. This follows from [6, Theorem 5.5]. �
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2.3. Modular Curves. In this paper, we are interested in characterizing degrees of points on the
modular curve X1(N), where N is a positive integer. Recall X1(N) is an algebraic curve over Q
whose non-cuspidal points correspond to isomorphism classes of elliptic curves with a distinguished
point of order N . See [16, Section 7.7], [15], [34, §6.7], [35, Appendix C, §13], or [14] for more
details. If x ∈ X1(N) is closed point, we define the degree of x to be the degree of the residue
field Q(x). For a non-cuspidal point x, we can construct Q(x) explicitly via the following result.

Lemma 2.3. Let E be an elliptic curve and let P ∈ E be a point of order N . Then the residue
field of the closed point x = [E,P ] ∈ X1(N) is given by

Q(x) = Q(j(E), h(P )),

where h : E → E/Aut(E) ∼= P1 is a Weber function for E. There is Weierstrass equation for E
defined over Q(x) for which P ∈ E(Q(x)), and Q(x) is contained in any number field over which
both E and P are defined.

Proof. See, for example, [9, Lemma 2.5], and [14, p. 274, Proposition VI.3.2]. �

If E/Q(j(E)) corresponds to an equation of the form y2 = x3 + Ax + B and P = (x0, y0) ∈ E,
then we may take

h(P ) =


x AB 6= 0

x2 B = 0

x3 A = 0

.

Thus by Lemma 2.3 we can compute the degree of a point on X1(N) associated to a non-CM elliptic
curve by factoring division polynomials. See [34, p. 107] for details.

Many of our results rely on first constructing an explicit point x ∈ X1(`
k) for some small integer

k, and then obtaining information on the degree of lifts of x using known results about the degree
of maps between modular curves.

Proposition 2.4. For positive integers a and b, there is a Q-rational map f : X1(ab) → X1(a)
which sends [E,P ] to [E, bP ]. Moreover

deg(f) = cf · b2
∏
p|b, p-a

(
1− 1

p2

)
,

where cf = 1/2 if a ≤ 2 and ab > 2 and cf = 1 otherwise.

Proof. The moduli interpretation ensures the map is defined over Q, and the degree calculation
follows from [16, p.66]. �

3. Preliminary Results

In this section, we begin by establishing a brief technical result concerning the field of definition
of an isogeny (§3.1), which essential follows from prior work of Cremona and Najman [12, Corollary
A.5] or Clark [10, Proposition 3.2]. This is used in the proof of Proposition 1.6 appearing in
§3.2, and also to show in §3.3 that only finitely many minimal torsion curves exist within a fixed
geometric isogeny class for a given prime `. In §3.4 we conclude with a lemma relating the image
of certain Galois representations attached to elliptic curves connected by a rational cyclic isogeny.
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3.1. Fields of Definition of Isogenies. Let E0/Q be a non-CM elliptic curve and let E ∈ E .
By definition, there exists an isogeny ϕ : E → E0 defined over Q. Since we are only interested
in characterizing degrees of closed points on X1(N), which can be computed using any model
of E by Lemma 2.3, we are free to replace E and E0 by quadratic twists in order to achieve a
more convenient representation of ϕ. The lemma given below essentially follows from the fact that
Q(j(E), j(E0)) = Q(j(E)) is contained in the residue field of any closed point on X1(N) associated
to E, and this is the field of moduli of the isogeny ϕ; see [10, §3.3] or [12, Corollary A.5].

Lemma 3.1. Let E be the geometric isogeny class of a non-CM elliptic curve E0/Q and let E ∈ E.
Suppose x = [E,P ] ∈ X1(`

k) for some prime number `, and let F := Q(x). There is a model of
E/F for which P ∈ E(F ) and such that there exists an F -rational cyclic isogeny ϕ : E → E′ with
j(E′) = j(E0).

Proof. Since E ∈ E , by definition there exists an isogeny ϕ : E → E0 defined over Q which we
may assume is cyclic of degree N ; see Lemma A.1 in [12]. Let C denote its kernel. Note that
F = Q(j(E), h(P )) by Lemma 2.3 and there exists a Weierstrass equation of E/F with P ∈ E(F ).
The proof of [10, Proposition 3.2] shows C is F -rational, as we will now show. Suppose σ(C) 6= C
for some σ ∈ GalF , and consider the induced isogeny Eσ → (E/C)σ. Since j(E/C) ∈ Q, we see
that j((E/C)σ) = j(E0). Thus composition with an isomorphism to E0 yields a cyclic N -isogeny
ψ : E → E0 with kernel σ(C). But having two cyclic N -isogenies from E to E0 with distinct kernels
can happen only if E has complex multiplication (see the proof of [10, Proposition 3.2] for details).
We have reached a contradiction. �

3.2. Proof of Proposition 1.6. In this section, we prove Proposition 1.6, which we restate as
Proposition 3.2 below. This strengthens [9, Lemma 4.6].

Proposition 3.2. Let E0/Q be a non-CM elliptic curve, and let E denote the corresponding geo-
metric isogeny class. Suppose ` is a prime number, and set d := ord`([GL2(Z`) : im ρE0,`∞ ]). If

E ∈ E, then the degree of any point on X1(`
k) associated to E is divisible by{

deg(x) · `max(0,2k−2−d) if ` is odd,

deg(x) · `max(0,2k−3−d) if ` = 2,

for some x ∈ X1(`) associated to E0 or E0/C where C is the kernel of a Q-rational cyclic `-isogeny.
In particular, if E0 has no `-isogeny over Q, then the latter case cannot occur.

Proof. Let E ∈ E , and fix P ∈ E of order `k. Define F := Q(j(E), h(P )). By Lemma 3.1, there is a
model of E/F where P ∈ E(F ) and such that there exists an F -rational cyclic isogeny ϕ : E → E′

with j(E′) = j(E0). By [9, Lemma 4.6], we have [F : Q] is divisible by{
`max(0,2k−2−d) if ` is odd,

`max(0,2k−3−d) if ` = 2.

By [9, Corollary 4.3], E′ has a point of order ` over an extension F ′/F of degree dividing `. In
particular, there exists x = [E′, P ′] ∈ X1(`) such that Q(h(P ′)) ⊆ F ′. Hence

deg(x) | ` · [F : Q].

By checking the possible images characterized in Proposition 2.1, we see that if im ρE0,` does not
land in a Borel or split Cartan subgroup, then deg(x) is relatively prime to `. Thus deg(x) | [F : Q].
Combining this with the divisibility conditions obtained above, we find [F : Q] is divisible by{

deg(x) · `max(0,2k−2−d) if ` is odd,

deg(x) · `max(0,2k−d−3) if ` = 2.
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So suppose E0/Q has a rational cyclic `-isogeny C, but im ρE0,` is not in a split Cartan subgroup.
By Theorem 3.32 and Tables 3 and 4 of [37], by replacing E0 with E0/C if necessary, we may assume
E0 has mod ` image in Table 1 of the appendix. If deg(x) is prime to `, the argument goes as
before, so suppose deg(x) = ` · x0. As we see in Table 1, in each case there exists x′ ∈ X1(`)
associated to E0 such that deg(x′) | x0, so the result holds with x′ in place of x. �

3.3. Minimal Torsion Curves.

Proposition 3.3. Let E/Q be an elliptic curve and fix a prime number `. There exist at most
finitely many minimal torsion curves for ` up to isomorphism over Q.

Proof. Let E denote the geometric isogeny class of E, and let Emin ∈ E be a minimal torsion curve
for `. Then in particular, Emin corresponds to a point on X1(`) of least possible degree among all
curves in E , and so

[Q(j(Emin)) : Q] ≤ `2 − 1

2
,

the least possible degree of a point on X1(`) associated to E. If E has complex multiplication, then
there are only finitely many options for Emin as there are only finitely many CM j-invariants in an
extension of bounded degree (since there are only finitely many imaginary quadratic fields—and
hence imaginary quadratic orders—of a given class number [25]). So suppose E is non-CM.

Since Emin ∈ E , by definition there exists an isogeny ϕ : E → Emin defined over Q which we
may assume is cyclic of degree N by [12, Lemma A.1]. By replacing E,Emin with quadratic twists
if necessary, we may assume ϕ, E, and Emin are all defined over Q(j(Emin)) by [10, §3.3] or [12,
Corollary A.5]. In other words,

Emin
∼= E/C

for some order N cyclic subgroup C of E which is rational over Q(j(Emin)). We will show that N is
bounded by a constant that depends only on `. This will imply there are only finitely many points
on E which can serve as a generator for ker(ϕ) and hence only finitely many possible candidates
for Emin

By Serre’s Open Image Theorem [33], the mod p Galois representation of an elliptic curve E′/Q
with j(E′) = j(E) is surjective for sufficiently large primes p. In particular, for these primes the
degree of a point on X0(p) associated to E′ (or, alternatively, associated to E) is p + 1. Since
p+ 1 > (`2 − 1)/2 for large enough p, we see that only finitely many primes divide N :

Supp(N) = {p1, p2, . . . , pr}.
Note that for each odd p ∈ Supp(N), the image of the mod p Galois representation of E′/Q is of
finite index in GL2(Zp), again as a consequence of Serre’s Open Image Theorem [33]. Thus there

exists k ∈ Z+ such that for any point x ∈ X0(p
d) associated to E′ with d ≥ k we have

deg(x) = deg(f) · deg(f(x)),

where f : X0(p
d) → X0(p

k) is the natural map. For d large enough, we have deg(f) > (`2 − 1)/2,
so there is an upper bound on the power of p which can divide N . Since Supp(N) is finite and
there is an upper bound on the power of each prime which divides N , we see that N is bounded
by a constant which depends on `, as desired. �

Remark 3.4. The minimal torsion curve within a fixed geometric isogeny class may or may not be
unique (up to isomorphism over Q). For example, let E0/Q be the elliptic curve with LMFBD label
38.b2 and let E denote its geometric isogeny class. Then the 5-adic Galois representation associated
to E0 is 5.24.0.1, and E0 gives a rational point on X1(5) of degree 1. Since ord5([GL2(Z5) :
im ρE0,5∞ ]) = 0 and deg(X1(5

k)→ X1(5)) = 52k−2, the elliptic curve E0 is a minimal torsion curve
for 5 by Proposition 3.2. Moreover, any minimal torsion curve for 5 must in particular give a point
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of minimal degree for X1(5), which means it must have j-invariant in Q. The only other elliptic
curve in E with j-invariant in Q is the elliptic curve E′ with LMFDB label 38.b1. However, E′

gives points on X1(5) of degree 2 and 5, so it is not a minimal torsion curve. It follows that there
is a unique minimal torsion curve for the geometric isogeny class.

On the other hand, let E0/Q be the elliptic curve with LMFDB label 50.b1 and let E denote its
geometric isogeny class. The image of the 3-adic Galois representation associated to E0 is 3.4.0.1.
There is a point on X1(3) associated to E0 if degree 1, and as in the previous example we see that
E0 is a minimal torsion curve for 3 by Proposition 3.2. However, one can check that any elliptic
curve Q-isogenous to E0 is a minimal torsion curve, as they each have 3-adic image 3.4.0.1. This
gives 4 distinct minimal torsion curves for the class E with respect to the prime 3.

Remark 3.5. We note there may be infinitely many elliptic curves (up to isomorphism over Q)
within a fixed geometric isogeny class which are minimal for X1(`

k) for some k. For example,
suppose the `-adic Galois representation of a non-CM elliptic curve E/Q is surjective, and let C be
a cyclic subgroup of E of order `r for r ∈ Z+. The elliptic curve E/C is defined over the extension
Q(C) of degree `r−1(` + 1) and possesses a Q(C)-rational cyclic `r isogeny. By Proposition 2.2,
E/C gives a point on X1(`

r) of degree `2r−2(`2 − 1)/2. This is of minimal degree for the geometric
isogeny class associated to E by Proposition 3.2.

3.4. Image of Galois Representations Under Isogeny.

Lemma 3.6. Suppose E1/F is a non-CM elliptic curve, and fix a prime number `. If ϕ : E1 → E2

is an F -rational cyclic `r-isogeny of elliptic curves over F , then im ρE2,`k is completely determined
by im ρE1,`r+k . In particular, im ρE1,`∞ completely determines im ρE2,`∞.

Proof. Let {P,Q} be a basis for E1[`
r+k], where ker(ϕ) = 〈`kP 〉. Then with respect to this basis,

for any σ ∈ GalF , we have

ρE1,`r+k(σ) =

(
a b
`rc d

)
,

for a, b, c, d ∈ Z/`r+kZ, since the matrix must be upper triangular mod `r. One can check that
{ϕ(P ), `rϕ(Q)} gives a basis for E2[`

k]. Moreover, for σ ∈ GalF , we have

σ(ϕ(P )) = ϕ(σ(P )) = ϕ(aP + `rcQ) = aϕ(P ) + c`rϕ(Q),

σ(`rϕ(Q)) = `rϕ(σ(Q)) = `rϕ(bP + dQ) = `rbϕ(P ) + d`rϕ(Q).

Thus

ρE2,`k(σ) =

(
a `rb
c d

)
. �

4. Proof of Theorems 1.5 and 1.3 for ` ≥ 5

In this section, we will prove the following, which improves upon the divisibility conditions of [9,
Proposition 4.1], and also specifies when minimal torsion curves exists for points of odd degree.

Proposition 4.1. Let E0/Q be a non-CM elliptic curve and let E denote the corresponding geo-
metric isogeny class. Suppose ` ≥ 5 is prime. If E ∈ E and x = [E,P ] ∈ X1(`

k) is a point of odd
degree for k ≥ 2, then ` ∈ {5, 7, 11, 13} and the following divisibility conditions hold and are best
possible, where d = ord`([GL2(Z`) : im ρE0,`∞ ]):

(1) If ` = 13, then 3 · 132k−2 | deg(x).
(2) If ` = 11, then 5 · 112k−2 | deg(x).
(3) If ` = 7 and j(E′) 6= 33 · 5 · 75/27, then 72k−2 | deg(x).

(4) If ` = 7 and j(E′) = 33 · 5 · 75/27, then 9 · 7max(0,2k−3) | deg(x).
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(5) If ` = 5, then 5max(0,2k−3) | deg(x).

Moreover, for each E, a minimal torsion curve exists for points of odd degree and has j-invariant
in Q unless j(E0) = 33 · 5 · 75/27 and ` = 7, in which case the j-invariant generates an extension of
degree 3. By replacing E0 with another elliptic curve over Q in E if necessary, we may take Emin
to be of the form E0/C where C is a cyclic subgroup of order `.

4.1. A Preliminary Result. We begin with a preliminary result concerning minimal torsion
curves within geometric isogeny classes of elliptic curves with a Q-rational cyclic isogeny. In this
case, the result largely follows from Proposition 1.6 and prior work of Greenberg [24] and Greenberg,
Rubin, Silverberg, Stoll [23].

Lemma 4.2. Suppose ` ≥ 5 is prime. Let E0/Q be a non-CM elliptic curve which admits a rational
cyclic `-isogeny, and let E denote the corresponding geometric isogeny class. Then the divisibility
conditions of Proposition 1.6 are best-possible. Moreover, there exists E′/Q ∈ E and a Q-rational
cyclic subgroup C ≤ E′ of order ` such that E′/C is a minimal torsion curve.

Proof. Suppose first that ` > 5 or that ` = 5 and E0 is not Q-isogenous to an elliptic curve
with a rational cyclic 25-isogeny. It follows from Greenberg [24, Theorems 1 and 2, Remark
4.2.1] and Greenberg, Rubin, Silverberg, Stoll [23] that ord`([GL2(Z`) : im ρE0,`∞ ]) = 0. Since

deg(X1(`
k)→ X1(`)) = `2k−2, the result follows from Proposition 1.6.

Now, suppose ` = 5 and E0 has a rational cyclic 25-isogeny or two independent 5-isogenies. Then
by work of Greenberg [24, Theorem 2], we have ord5([GL2(Z5) : im ρE0,5∞ ]) = 1. By replacing E0

with a curve Q-isogenous if necessary, we may assume E0 has two independent 5-isogenies. Then
im ρE0,5 is one of the following, and we consider each case separately:

• 5Cs.1.1: E0 has a subgroup C1 generated by a rational point P of order 5 and an additional
rational cyclic subgroup C2 of order 5. Then E1 := E0/C2 has a rational cyclic 25-isogeny,
and the image of P is a point of order 5 in E1(Q) lying in the kernel of this isogeny. Thus
the image of the isogeny character χ : GalQ → (Z/25Z)× lands in the subgroup {a : a ≡ 1
(mod 5)} and so has order dividing 5. It follows that E1 attains a rational point of order
25 in an extension of order dividing 5. The degree must be exactly 5 by Proposition 1.6 ,
and moreover lifts of this point show the divisibility condition is best-possible for all k.
• 5Cs.1.3 or 5Cs.4.1: A quadratic twist of E0 will have a rational point of order 5 and an

independent 5-isogeny, so the conclusion follows as in the last case.
• 5Cs: E0 has two independent 5-isogenies with kernels C1 and C2. Then E1 := E0/C2 has

a rational cyclic 25-isogeny and attains a point of order 5 in degree dividing 2 and a point
of order 25 in degree dividing 10. Since 2 divides deg(x) for all x ∈ X1(5) associated to
E0 or E0/C where C is the kernel of a Q-rational cyclic `-isogeny, this is best possible by
Proposition 1.6. �

4.2. Proof of Proposition 4.1. Let F = Q(x). By Lemma 3.1, there is a model of E/F where
P ∈ E(F ) and such that there exists an F -rational cyclic isogeny ϕ : E → E′ with j(E′) = j(E0).
Since E has an `-isogeny over F , so does E′ by [12, Proposition 3.2]. It follows from [12, Proposition
3.3] that E0/Q has a Q-rational cyclic `-isogeny, unless ` = 7 and j(E0) = 33 · 5 · 75/27. By Lemma
4.2, Proposition 1.6, and checking the possible images in Tables 1 and 2 of [22] which may yield
points of odd degree points, it suffices to assume ` = 7 and j(E0) = 33 · 5 · 75/27.

Let P ∈ E(F ) be a point of order 7k. Notice that 7k−1P is a point of order 7 on E and is also
defined over F on E. By part [9, Corollary 4.3], for any E′ that is F -isogenous to E, the curve E′

has a rational point of order 7 over an extension F ′/F of degree 1 or 7. As j(E′) = 33 · 5 · 75/27,
a computation with division polynomials shows F ′ is divisible by 6 or 9. Since [F ′ : F ] divides 7,
it follows that 6 or 9 must divide [F : Q]. Since F is an extension of odd degree, we must have

9



9 | [F : Q]. Moreover, in [9, Proposition 4.1], it is proven that 3 · 7max(0,2k−3) divides [F : Q].

Therefore, 9 · 7max(0,2k−3) divides [F : Q].

We will now show there is a number field F of degree 9 · 7max(0,2k−3) and an elliptic curve E/F
isogenous to E′ with j(E′) = 33 · 5 · 75/27 where E has a point of order 7k defined over F . By
replacing E0 with a quadratic twist if necessary, we may assume E0 has LMFDB label 2450.y1. A
computation with division polynomials confirms that E0 gives a point on X1(7) of degree 9. Notice
that this point fulfills the k = 0 case. In addition, the mod 7 image of E0 is 7Ns.2.1, which is
generated by the following matrices: (

0 5
5 0

)
,

(
0 5
3 0

)
A Magma computation shows that 7NS.2.1 contains an index 3 subgroup conjugate to the group

generated by (
2 0
0 5

)
,

(
4 0
0 4

)
.

Thus over a cubic extension F , E0 attains two independent 7 isogenies, and is F -isogenous to
an elliptic curve E1/F with a rational cyclic 49-isogeny. The curve E1 gives a point on X1(49)
of degree dividing 9 · 7. The previous paragraph shows it must have degree exactly 9 · 7, and
since deg(X1(7

k) → X1(7
2)) has degree 72k−4, the divisibility conditions of Proposition 1.6 are

best-possible. Moreover, E1 is a minimal torsion curve for points on X1(7
k) of odd degree.

5. Proof of Theorems 1.5 and 1.3 for ` = 3

In this section, we will prove the following result, which includes instances where the divisibility
conditions of Proposition 1.6 can be improved.

Proposition 5.1. Let E0/Q be a non-CM elliptic curve and let E denote the corresponding geo-
metric isogeny class. If E ∈ E and x = [E,P ] ∈ X1(3

k) is a point of odd degree for k ≥ 2,
then the following divisibility conditions hold and are best possible for k sufficiently large, where
d = ord3([GL2(Z3) : im ρE0,3∞ ]):

(1) 3max(0,2k−1−d) | deg(x) if there is E1/Q ∈ E with im ρE1,3∞ ∈ {9.36.0.6, 9.36.0.8},
(2) 3max(0,2k−2−d) | deg(x) otherwise.

Moreover, a minimal torsion curve exists for points of odd degree (and has j-invariant in Q) unless
there is E1/Q ∈ E with 3-adic image 9.12.0.2, 9.36.0.2, 9.36.0.7, or 9.36.0.8.

From the proof, we immediately deduce the following corollaries.

Corollary 5.2. Moreover, in each case, there exists E0/Q in E and a cyclic subgroup C ≤ E of
order 3 such that E0/C produces a point on X1(3

k) in least possible odd degree for all k sufficiently
large. In general, there is not a unique choice for such a C.

Corollary 5.3. Let E/Q be a non-CM elliptic curve and let E denote the corresponding geometric

isogeny class. If E′ ∈ E and x = [E′, P ′] ∈ X1(3
k) is a point of odd degree, then 3max(0,2k−4) | deg(x),

and this is best possible without placing restrictions on E.

Remark 5.4. By Proposition 5.1, if ` = 3 and there exists E1 ∈ E with im ρE1,3∞ = 9.36.0.6, then

any odd degree point on X1(3
k) associated to an elliptic curve in E is divisible by 3max(0,2k−3). By

Proposition 1.6, any point of even degree must be divisible by 2 · 3max(0,2k−4). Since there exists
x ∈ X1(3) of degree 1 associated to E1, this strengthens the lower bound in Proposition 1.6 by a
factor of 2 or 3, respectively. Moreover, both conditions are sharp. This follows from Proposition
5.1 for points of odd degree. To verify the condition for points of even degree, choose E0 ∈ E with
im ρE1,3∞ = 9.36.0.3. A Magma computation shows that, over a field extension F/Q of degree 6,
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the elliptic curve E0 attains two independent F -rational cyclic 9-isogenies. Thus, E0 is F -isogenous
to an elliptic curve with an F -rational cyclic 81 isogeny which produces a point of degree 2 · 34 by
Proposition 2.2. Since deg(X1(3

k)→ X1(3
4)) = 32k−8, we attain a point on X1(3

k) associated to E
of degree 2 · 32k−4 for any k ≥ 4. Note this construction is formed by taking the quotient of E0 by
a cyclic subgroup C of order 9, and Magma computations suggest that no elliptic curve in E which
is the quotient of a rational elliptic curve by a cyclic subgroup of order ` will achieve a point on
X1(3

k) in degree 2 · 3max(0,2k−4).

5.1. Preliminary Results. In this section we prove several lemmas which are necessary in the
case where E contains E0/Q with im ρE0,3∞ = 9.36.0.6 or 9.36.0.8.

Lemma 5.5. Suppose F is a number field of odd degree and E/F is a non-CM elliptic curve with
P ∈ E(F ) of order 3k, k ≥ 2. Let ϕ : E → E′ be an F -rational isogeny, where there exists E0/Q
of with j(E0) = j(E′) and d := ord3([GL2(Z3) : im ρE0,3∞ ]). If 32k−1−d - [F : Q], then there exists

a basis {P,Q} of E[3k] so that

im ρE/F,3k =

{(
1 x
0 y

)
|x ∈ Z/3kZ, y ∈ (Z/3kZ)×

}
and im ρE/F,3∞ = π−1(im ρE/F,3k).

Proof. Suppose 32k−1−d - [F : Q], and let {P,Q} be a basis of E[3k]. Replacing F with at worst a
quadratic extension L/F , we may view ϕ as an L-isogeny from E to our original model for E0/Q,
under base extension to L. Then im ρE/L,3k is contained in

H :=

{(
1 x
0 y

)
|x ∈ Z/3kZ, y ∈ (Z/3kZ)×

}
,

which has order 3k · ϕ(3k) = 32k−1 · 2. If ord3(# im ρE/L,3k) < 2k − 1, then the index of the mod

3k Galois representation of E/L is divisible by 32k−1. Thus

32k−1 | [GL2(Z3) : im ρE/L,3∞ ].

By Lemma 4.5 of [9], we have 32k−1 | [GL2(Z3) : im ρE0/Q,3∞ ] · [L ∩Q(E0[3
∞]) : Q]. Since

ord3([GL2(Z3) : im ρE0/Q,3∞ ]) = d,

it follows that 32k−1−d | [L ∩ Q(E0[3
∞]) : Q]. Since L is at most a quadratic extension of F , then

32k−1−d | [F : Q], contradicting our assumption. So we may assume ord3(# im ρE/L,3k) = 2k − 1.

Note im ρE/F,3k contained in H as well, and since L/F is at worst a quadratic extension, we have

ord3(# im ρE/F,3k) = 2k − 1. If im ρE/F,3k is properly contained in H, then # im ρE/F,3k = 32k−1.
In particular, it is a Sylow 3-subgroup of H of index 2. By the Sylow Theorems, this index 2
subgroup is unique, so it must be equal to

im ρE/F,3k =

{(
1 x
0 y

)
|x ∈ Z/3kZ, y ∈ K ≤ (Z/3kZ)×

}
,

where K is the subgroup of (Z/3kZ)× of order 3k−1. However, since the image of the determinant
map is not surjective and has size 3k−1, we find that Q(ζ3k) ∩ F is a quadratic extension. This
contradicts F having odd degree. Hence im ρE/F,3k = H.

If im ρE/F,3∞ 6= π−1(im ρE/F,3k), then [F (E[3k+1]) : F (E[3k])] divides 33; see, for example, [7,

Proposition 3.5]. Since # Gal(F (E[3k])/F ) = 32k−1 · 2, we have

# Gal(F (E[3k+1])/F ) | 33 · 32k−1 · 2 = 32k+2 · 2.
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It follows that # Gal(L(E[3k+1])/F ) | 32k+2 ·2, and so the index of the 3-adic Galois representation
of E/L is divisible by at least 32k−1 · 8. By Lemma 4.5 of [9], we have 32k−1 · 8 | [GL2(Z3) :
im ρE0/Q,3∞ ] · [L ∩ Q(E0[3

∞]) : Q]. It follows that 32k−1−d | [L ∩ Q(E0[3
∞]) : Q]. Since L is at

worst a quadratic extension of F , then 32k−1−d | [F : Q], contradicting our assumption. Thus
im ρE/F,3∞ = π−1(im ρE/F,3k) �

Lemma 5.6. Suppose F is a number field of odd degree and E/F is a non-CM elliptic curve
with P ∈ E(F ) of order 3k, k ≥ 2. Let ϕ : E → E′ be an F -rational isogeny of degree 3r for
r ∈ Z+, where there exists E0/Q of with j(E0) = j(E′) and d := ord3([GL2(Z3) : im ρE0,3∞ ]). If

32k−1−d - [F : Q], then r ≤ k and ker(ϕ) ⊆ 〈P 〉.

Proof. Suppose 32k−1−d - [F : Q]. First, suppose for the sake of contradiction that r > k. Then

im ρE,3r 6= π−1(im ρE,3k),

and by Lemma 5.5 we have 32k−1−d | [F : Q]. We have reached a contradiction.
So suppose r ≤ k and, for the sake of contradiction, suppose that ker(ϕ) 6⊆ 〈P 〉. Then there

exists R ∈ E of order 3r such that ker(ϕ) = 〈R〉. With respect to the basis {3k−rP,Q1}, by Lemma
5.5 we may assume

im ρE/F,3r =

{(
1 x
0 y

)
|x ∈ Z/3rZ, y ∈ (Z/3rZ)×

}
= I1.

With respect to the basis {R,Q2}, the image also consists of upper triangular matrices, say I2.
Thus there exists a matrix M ∈ GL2(Z/3rZ) such that MI1M−1 = I2. Let

M =

(
a b
c d

)
.

We note M

(
1 x
0 y

)
M−1 is upper-triangular iff dc − c2x − dcy ≡ 0 (mod 3r). If c 6≡ 0 (mod 3r),

then x = y = 1 implies c2 ≡ 0 (mod 3r). This cannot be if r = 1, so assume r > 1. Moreover,
when y = 2, then this implies dc ≡ 0 (mod 3r). However, under our assumptions, we have 3r | c2
and 3r | dc, but 3r - c. Thus 3 | c and 3 | d, which means det(M) = ad− bc is not a unit in Z/3rZ,
contradicting the fact that M is invertible. So c ≡ 0 (mod 3r). But then

M

(
1 x
0 y

)
M−1 =

(
1 x′

0 y′

)
,

and R ∈ E(F ).
Since we have assumed R 6∈ 〈P 〉, then Z/3Z× Z/3Z ⊆ 〈R,P 〉 and

im ρE/F,3k =

{(
1 x
0 y

)
|x ≡ 0 (mod 3), y ≡ 1 (mod 3)

}
.

This contradicts Lemma 5.5. �

Proposition 5.7. Suppose F is a number field of odd degree and E/F is an elliptic curve with
P ∈ E(F ) of order 3k, k ≥ 2. Let ϕ : E → E′ be an F -rational isogeny of degree 3r for r ∈ Z+,
where there exists E0/Q of with j(E0) = j(E′) and im ρE0,3∞ = 9.36.0.6 or 9.36.0.8. Then 32k−3 |
[F : Q].

Proof. If im ρE0,3∞ = 9.36.0.6 or 9.36.0.8, then ord3([GL2(Z3) : im ρE0,3∞ ]) = 2. Suppose for the

sake of contradiction that 32k−3 - [F : Q]. Then by Lemma 5.5, with respect to a basis {P,Q},

im ρE/F,3k =

{(
1 x
0 y

)
|x ∈ Z/3kZ, y ∈ (Z/3kZ)×

}
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and im ρE/F,3∞ = π−1(im ρE/F,3k). Moreover, by Lemma 5.6, we have r ≤ k and ker(ϕ) ⊆ 〈P 〉.
First, suppose r = k − 1 or k. Set d = r + 2, and let {R,S} be a basis of E[3d] such that

3d−kR = P and 3d−kS = Q. Then we will show {ϕ(R), 3k−2ϕ(Q)} is a basis of E′[9]. Suppose
not. Then there exist integers α, β such that αϕ(R) = β3k−2ϕ(Q) is nontrivial. This implies
αR − β3k−2Q ∈ ker(ϕ) ⊆ 〈P 〉 = 〈3d−kR〉. Thus a nonzero multiple of S is in the cyclic subgroup
generated by R, which contradicts the fact that {R,S} is a basis of E[3d].

As noted at the start of the proof, there exists σ ∈ GalF such that

ρE/F,3k(σ) =

(
1 0
0 4

)
.

Since im ρE/F,3∞ = π−1(im ρE/F,3k), with respect to the basis {R,S} of E[3d], we know there exists

σ′ ∈ GalF such that

ρE/F,3d(σ′) =

(
1 0
0 4

)
.

Under the basis {ϕ(R), 3k−2ϕ(Q)} of E′[9],

σ′(ϕ(R)) = ϕ(σ′(R))

= ϕ(R)

σ′(3k−2ϕ(Q)) = 3k−2ϕ(σ′(Q))

= 3k−2ϕ(4Q)

= 4 · 3k−2ϕ(Q)

So

ρE′/F,9(σ
′) =

(
1 0
0 4

)
.

After at worst a quadratic extension L/F , we have E′/L ∼=L E0/L. Since the matrix above has
order 3,

ρE0/L,9(σ
′) =

(
1 0
0 4

)
.

This means that the group generated by ρE0/L,9(σ
′) is conjugate to an order 3 subgroup of 9.36.0.6

or 9.36.0.8 mod 9, and a Magma computation shows no such subgroup exists.
Now, suppose r ≤ k − 2. Then {3k−r−2ϕ(P ), 3k−2ϕ(Q)} is a basis of E′[9] since ker(ϕ) ⊆ 〈P 〉.

Since P ∈ E(F ), we have 3k−r−2ϕ(P ) ∈ E′(F ). Moreover,

σ(3k−2ϕ(Q)) = 3k−2ϕ(σ(Q))

= 3k−2ϕ(xP + yQ)

= xϕ(3k−2P ) + y3k−2ϕ(Q)

= x3r3k−r−2ϕ(P ) + y3k−2ϕ(Q),

so

im ρE′/F,9 =

{(
1 3rx
0 y

)
|x ∈ Z/9Z, y ∈ (Z/9Z)×

}
.

After at worst a quadratic extension L/F , we have E′/L ∼=L E0/L, so we may assume im ρE0/L,9

contains (
1 0
0 4

)
.

We reach a contradiction as before. �
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5.2. Proof of Proposition 5.1. Let F = Q(x). By Lemma 3.1, there is a model of E/F where
P ∈ E(F ) and such that there exists an F -rational cyclic isogeny ϕ : E → E′ with j(E′) = j(E0).
Since E has a 3-isogeny over F , so does E′ by [12, Proposition 3.2]. It follows from [12, Proposition
3.3] that E0/Q has a Q-rational cyclic 3-isogeny. By [26, Corollary 1.3.1], the 3-adic image is one
of the following groups, and we will consider each separately. Note that since we are interested
in characterizing points on modular curves, we may restrict to cases where −I is contained in the
3-adic image. Also, since E0 gives a point of degree 1 on X1(3), any minimal torsion curve must
have j-invariant in Q.

(1) im ρE0,3∞ = 3.4.0.1: Here, E0 gives a point of degree 1 on X1(3). Since d = 0 and

deg(X1(3
k) → X1(3)) = 32k−2, the divisibility condition of Proposition 1.6 is best pos-

sible, and E0 is a minimal torsion curve. Any elliptic curve Q-isogenous to E0 is also a
minimal torsion curve.

(2) im ρE0,3∞ = 3.12.0.1 or 9.12.0.1: By Lemma 3.6, these represent images of elliptic curves
in the same Q-isogeny class (consider, for example, isogeny class 98.a in the LMFDB), so
we are free to assume E0 has image 9.12.0.1. Thus E0 corresponds to points on X1(3) and
X1(9) of degree 1 and 3, respectively. Since d = 1 and deg(X1(3

k) → X1(3)) = 32k−2 for
k ≥ 2, the divisibility condition of Proposition 1.6 is best-possible and E0 is a minimal
torsion curve. Any elliptic curve Q-isogenous to E0 with 3-adic image 9.12.0.1 is a minimal
torsion curve. If the 3-adic image is 3.12.0.1, then it is not a minimal torsion curve.

(3) im ρE0,3∞ = 9.12.0.2: A Magma computation shows that for E0/Q with this image, there
exists a cubic extension F such that E0/F has an F -rational 9-isogeny and an independent
3-isogeny. Thus over F , the curve E0 is isogenous to E1/F with a rational cyclic 27-isogeny.
Thus E1 gives a point on X1(27) of degree at most 27 by Proposition 2.2. Since d = 1 and
deg(X1(3

k) → X1(27)) = 32k−6, the divisibility conditions of Proposition 1.6 are best-
possible for all k ≥ 3. No elliptic curve in E with j ∈ Q has a point of order 27 in this
degree or lower, so no minimal torsion curve exists.

(4) im ρE0,3∞ = 9.36.0.2 or 27.36.0.1: By Lemma 3.6, these represent images of elliptic curves
in the same Q-isogeny class (consider, for example, isogeny class 304.c in the LMFBD),
so we are free to assume E0 has image 27.36.0.1. A Magma computation shows that for
E0/Q with this image, there exists a cubic extension F such that E0/F has an F -rational
27-isogeny and an independent 3-isogeny. Thus over F , the curve E0 is isogenous to E1/F
with a rational cyclic 81-isogeny. Thus E1 gives a point on X1(81) of degree at most 81 by
Proposition 2.2. Since d = 2 and deg(X1(3

k)→ X1(81)) = 32k−8, the divisibility conditions
of Proposition 1.6 are best-possible for all k ≥ 4. No elliptic curve in E with j-invariant in
Q has a point of order 81 in this degree or lower, so there is no minimal torsion curve.

(5) im ρE0,3∞ = 9.36.0.3 or 9.36.0.6: By Lemma 3.6, these represent images of elliptic curves in
the same Q-isogeny class (consider, for example, isogeny class 22491.u in the LMFBD), so we
are free to assume E0 has image 9.36.0.6. If ϕ : E → E′ has degree 3r ·d for 3 - d, then there
exists an elliptic curve d-isogenous to E with an F -rational point of order 3k. Replacing
E with this curve if necessary, we may assume ϕ has degree 3r. Then 32k−3 | [F : Q] by
Proposition 5.7. Since d = 2, the conclusion follows, as E0 is a minimal torsion curve. Note
an elliptic curve over Q with 3-adic image 9.36.0.3 is not a minimal torsion curve.

(6) im ρE0,3∞ = 9.36.0.1, 9.36.0.4, or 9.36.0.5: By Lemma 3.6, these represent images of ellip-
tic curves in the same Q-isogeny class (consider, for example, isogeny class 432.b in the
LMFBD), so we are free to assume E0 has image 9.36.0.4. A twist of E0 has a rational
point of order 9 and d = 2, so divisibility conditions of Proposition 1.6 are best possible
and E0 is a minimal torsion curve. Note an elliptic curve over Q with 3-adic image 9.36.0.1
or 9.36.0.5 is not a minimal torsion curve.
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(7) im ρE0,3∞ = 9.36.0.7 or 9.36.0.9: We are free to assume E0 has image 9.36.0.7 (consider, for
example, isogeny class 1734.k in the LMFDB). A Magma computation shows that for E0/Q
with this image, there exists a cubic extension F such that a twist Et0 of E0/F has an F -
rational point of order 9 (say Q) and an independent 3-isogeny (say, with kernel generated
by R). Then ψ : Et0 → E1 = Et0/〈R〉 is a degree 3 isogeny, where E1 has an F -rational
cyclic 27-isogeny and ψ(Q) ∈ E1(F ) is a point of order 9. Moreover, ψ(Q) is in the kernel
of E1’s rational 27-isogeny. Thus the image of the 27-isogeny character χ associated to

E1/F lands in {1, 10, 19} and E1 attains a point of order 27 in F
ker(χ)

, an extension of F of
degree dividing 3. Hence E1 corresponds to a point on X1(27) of degree dividing 9. Since
d = 2, the divisibility conditions of Proposition 1.6 are best-possible for k ≥ 3. No minimal
torsion curve exists, as all elliptic curves in E with j-invariant in Q give a point of order 3k

in degree at least 3max(0,2k−3).
(8) im ρE0,3∞ = 9.36.0.8: As in case 5, we may assume ϕ : E → E′ has degree 3r. Then

32k−3 | [F : Q] by Proposition 5.7. A Magma computation shows that for E0/Q with this
image, there exists a cubic extension F such that E0/F has an F -rational 9-isogeny and
an independent 3-isogeny. Thus over F , the curve E0 is isogenous to E1/F with a rational
cyclic 27-isogeny. Thus by Proposition 2.2, the curve E1 gives a point on X1(27) of degree
at most 27, and since d = 2, the divisibility conditions of Proposition 5.7 are best-possible
for k ≥ 3. Note E0 gives a point on X1(3

k) in degree at least 32k−2 for all k, so no minimal
torsion curve exists.

6. Proof of Theorem 1.5 for ` = 2

By Proposition 4.1 in [9], if a Q-curve has a point of order 2k defined over a field of odd degree
then k ≤ 4. As any elliptic curve geometrically isogenous to an elliptic curve with rational j-
invariant is a Q-curve, it suffices to show that k 6= 4. By work of [29], there exists a non-CM elliptic
curve defined over Q with a point of order 23, so this is the best possible bound.

Proposition 6.1. There is no elliptic curve E defined over a field F of odd degree such that
(i) E(F ) contains a point of order 24 and
(ii) E is F -isogenous to an elliptic curve E′ with j(E′) ∈ Q.

Proof. Suppose for the sake of contradiction that E has a point Q such that Q ∈ E(F ) and the
order of Q is 16. Then by Theorem 2.7 and Lemma A.1 in [12] there exists a cyclic F -rational
isogeny φ : E → E′ where j(E′) ∈ Q. The degree of φ can be taken to be a power of 2; indeed, if it
is not a power of 2, then it can be written as 2k ·n for some integers k and odd n > 1. Then, as it is
cyclic, there is a generator of the kernel S, and 2kS is a point of order n. Then E/〈2kS〉 can replace
E in the proof going forward, since the image of Q on E/〈2kS〉 has order 16 and E/〈2kS〉 → E/〈S〉
has degree 2k.

Then φ̂ : E′ → E the dual isogeny of φ exists and is also cyclic and of the same degree as φ;
therefore there exists P ∈ E′ of order 2k such that ker(φ̂) = 〈P 〉 and 〈P 〉 is F -rational. As 〈2k−1P 〉
is F -rational, but 2k−1P is a point of order 2, the point 2k−1P is F -rational. This is because if
σ ∈ Gal(K/K) fixes 〈2k−1P 〉, which consists only of O and 2k−1P , but cannot send 2k−1P to O
because it is a nonzero isogeny, it must fix 2k−1P . As the only points of order 2 on an elliptic
curve defined by y2 = x3 + Ax + B are of the form (x0, 0) where x0 is a root of x3 + Ax + B,
[Q(2k−1P ) : Q] ≤ 3. There is an immediate contradiction if [Q(2k−1P ) : Q] = 2, as Q(2k−1P ) ⊆ F
which has odd degree.

If [Q(2k−1P ) : Q] = 1, then [Q〈P 〉 : Q] = 1. But Q(〈P 〉) = Q(〈2k−1P 〉) by Proposition 3.6 of
[12]. Therefore P is defined over Q, and E (replaced by a twist if necessary) is defined over Q. In
particular, j(E) ∈ Q, which contradicts Theorem 3 of [8] as it has a point of order 16.
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Therefore, the only possibility is that [Q(2k−1P ) : Q] = 3, and so [Q(〈P 〉) : Q] = 3. Suppose
for sake of contradiction that k > 1, and consider the point 2k−2P of order 4. Because 〈2k−2P 〉 is
defined over the field Q(〈P 〉), there exists a Q(〈P 〉)-isogeny character χ associated to it. Let χ :

Gal(Q(〈P 〉)/Q(〈P 〉) → (Z/4Z)×, which has only two elements. Therefore, | im(χ)| ≤ |{1, 3}| = 2,
which implies that [Q(〈P 〉)(2k−2P ) : Q(〈P 〉]) ≤ 2. Therefore, [Q(2k−2P ) : Q] ≤ 6.

The field over which a point of order 2 is defined and the field over which an isogeny is defined
do not depend upon the equation of the elliptic curve, and so the case of E′ defined over a number
field F and the case of E′ defined over Q itself are equivalent. However, if E′ is defined over Q,
then because it has a point of order 2 in degree 3 and a point of order 4 in degree less than or
equal to 6, then by the data for Corollaries 3.4 and 3.5 of [21] it has index 16, 8, or 4. However,
this implies the degree of F is even by Proposition 3.2. Therefore k = 1 and so P has order 2.

However, that implies that the degree of φ̂ is 2, and so the degree of φ is 2. Therefore the order
of φ(Q) is at least 8, and φ(Q) is defined over F as both Q and φ are. Thus E′ has a point of order
8 defined over a field of odd degree. Moreover, the point of order 2 generated by φ(Q) must be
defined over a field of degree 3 as in the argument above. We’ve proven [Q(P ) : Q] = 3. and so all
points of order 2 generate an extension of degree 3. Therefore any E′′/Q with j(E′′) = j(E′), which
must be isomorphic over a degree 2 extension of F , must have a point R of order 4 defined over a
field of degree dividing 2 · [F : Q] and a point 2R of order 2 in degree 3. However, Q(2R) ⊂ Q(R)
and so note [Q(R) : Q(2R)] = 1, 2, or 4 by Proposition 4.6 of [22]. However, as it is contained in a
field of degree 2 · odd, it must be 1 or 2. Therefore, E′′ has a point of order 4 in degree dividing 6
and a point of order 2 in degree dividing 3, which is a contradiction as before. �

7. `-adic images of level `

Proposition 7.1. Suppose ` is an odd prime. Let E0/Q be a non-CM elliptic curve whose `-adic
Galois representation has level `. Let E denote the corresponding geometric isogeny class. Then
there exists E′/Q ∈ E and a cyclic subgroup C ≤ E′ of order ` such that E′/C is a minimal torsion
curve.

Proof. If im ρE0,` is surjective, this follows from Proposition 1.6 and the fact that deg(X1(`
k) →

X1(`)) = `2k−2. If E0/Q has a rational `-isogeny, then the result follow from Lemma 4.2 if ` ≥ 5
and the proof of Proposition 5.1 if ` = 3; see, specifically, cases 1 and 2.

If E0/Q has no rational `-isogeny and im ρE0,` is not surjective, then im ρE0,`∞ is the complete
preimage of one of the following groups by Proposition 2.1 and one may check that ord`([GL2(Z`) :
im ρE0,`∞ ]) = 1. We will consider each case separately. We note that in each of these cases, no
E′ ∈ E with j(E′) ∈ Q is a minimal torsion curve.

• C+
ns(`): This is a subgroup of size 2(`2 − 1), and up to a choice of basis it contains all

matrices (
a 0
0 a

)
, a 6≡ 0 (mod `),

(
a 0
0 −a

)
, a 6≡ 0 (mod `).

Since ` is odd, these matrices form a group of order 2(`− 1). Its fixed field has size `+ 1,
so over an extension of degree `+ 1, the curve E0 attains two independent `-isogenies with
kernels C1 and C2. Then by Proposition 2.2, the curve E0/C1 attains a point on X1(`)
in degree dividing (` + 1) · ϕ(`)/2 = (`2 − 1)/2 and a point on X1(`

2) in degree dividing
(` + 1) · ϕ(`2)/2 = (`2 − 1) · `/2. Since all points on X1(`) associated to E0 have degree
(`2 − 1)/2, Proposition 1.6 shows E0/C1 is a minimal torsion curve.
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• {a3 : a ∈ Cns(`)} ∪ {( 1 0
0 −1 ) · a3 : a ∈ Cns(`)}: In this case, ` ≡ 2 (mod 3) and the image

has size 2(`2 − 1)/3. Moreover, the image contains(
a3 0
0 a3

)
, a 6≡ 0 (mod `),(

a3 0
0 −a3

)
, a 6≡ 0 (mod `).

Note a 7→ a3 defines a homomorphism from (Z/`Z)× to itself, and the kernel has size 1
since no element of (Z/`Z)× has order 3. (Indeed, `− 1 ≡ 1 (mod 3), so 3 does not divide
#(Z/`Z)×.) Thus this map is surjective, and every element of (Z/`Z)× is of the form a3.
The fixed field of this group of matrices has degree (` + 1)/3, and over this extension E0

has two independent `-isogenies with kernels C1 and C2. By Proposition 2.2, the curve

E0/C1 attains a point on X1(`) in degree dividing (`+1)
3 · ϕ(`)2 = `2−1

6 and a point on X1(`
2)

in degree dividing (`+1)
3 · ϕ(`

2)
2 = (`2−1)·`

6 . Since all points on X1(`) associated to E0 have

degree at least (`2 − 1)/6, Proposition 1.6 shows E0/C1 is a minimal torsion curve.
• 13S4, 5S4: The curve E0 attains two independent `-isogenies in degree 6 with kernels C1

and C2. By Proposition 2.2, the curve E0/C1 attains a point on X1(`) in degree dividing

6 · ϕ(`)2 = 3(`− 1) and a point on X1(`
2) in degree dividing 6 · ϕ(`

2)
2 = 3`(`− 1). By Table 1

and 2 in [22] and Proposition 1.6, the elliptic curve E0/C1 is a minimal torsion curve.
• 7Ns, 7Ns.2.1, 7Ns.3.1, 5Ns, 5Ns.2.1, 3Ns: The curve E0 picks up 2 independent `-isogenies

in degree 2 with kernels C1 and C2. By Proposition 2.2, the curve E0/C1 attains a point

on X1(`) in degree dividing 2 · ϕ(`)2 = ` − 1 and a point on X1(`
2) in degree dividing

2 · ϕ(`
2)

2 = `(`− 1). By Table 1 and 2 in [22] and Proposition 1.6, the elliptic curve E0/C1

is a minimal torsion curve. �

Corollary 7.2. Suppose ` is an odd prime. Let E0/Q be a non-CM elliptic curve, and let E denote
the corresponding geometric isogeny class. If ord`([GL2(Z`) : im ρE0,`∞ ]) ≤ 1, then the least degree

of any point on X1(`
k) associated to E ∈ E is

deg(x) · `max(0,2k−2−d)

for x ∈ X1(`) of least degree associated to E0 or E0/C where C is the kernel of a Q-rational cyclic
`-isogeny. In particular, if E0 has no `-isogeny over Q, then the latter case cannot occur and x is
associated to E0.

Remark 7.3. The expression for the least degree does not necessarily divide all degrees. For
example, the proof of Proposition 7.1 shows that the least degree of a point on X1(7

k) associated

to E0 with im ρE0,7∞ = π−1(7Ns) is 7max(0,2k−3) · 6. However, there is a point on X1(7) associated

to E0 of degree 9, and points on X1(7
k) lying above this point will not have degree divisible by

7max(0,2k−3) · 6.

8. CM Elliptic Curves

Let K be an imaginary quadratic field, let w = #O×K , and suppose ` is an odd prime. Let E
be an elliptic curve with CM by OK , and let E denote the set of all elliptic curves geometrically
isogenous to E. In this section, we show that a minimal torsion curve exists for E if and only
if ` is split in K. This builds on work of Bourdon and Clark [4, 5]. We consider separately the
cases where ` is split, inert, or ramified in K. A key first step of the proof is to establish the
best-possible divisibility conditions for degrees of points on X1(`

n) associated to elliptic curves in
E . These appear as Propositions 8.1, 8.2, and 8.4.
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8.1. ` split in K.

Proposition 8.1. Let E be an OK-CM elliptic curve, where ` is an odd prime split in K. Then
the least degree of a point on X1(`

n) associated to E′ ∈ E is

2 · hK ·
`n−1(`− 1)

wK
,

and this is attained by E itself. In other words, E is a minimal torsion curve.

Proof. That E gives a point on X1(`
n) in this degree follows from [5, Theorem 6.2]; note that ` 6= 3

if ∆ = −3,−4 by the assumption that ` is split in K. It remains to show this is the least possible
degree among all E′ ∈ E . Since the endomorphism algebra is an isogeny invariant, any E′ ∈ E has
CM by an order in K. Since we already have the least degree for a point with CM by the maximal
order, we will henceforth assume E′ has CM by an order in K of conductor f > 1. For any point
x = [E′, P ′] ∈ X1(`

n), by [4, Theorem 6.2] and [5, Theorem 4.1] we have

hK ·
`n−1(`− 1)

2
| deg(x).

If deg(x) = hK · `
n−1(`−1)

2 · d < 2 · hK · `
n−1(`−1)
wK

for some d ∈ Z+, it must be that d = 1, wK = 2,

and

hK ·
`n−1(`− 1)

2
= deg(x).

This implies [Q(j(E′)) : Q] = hK . The degree of this extension is equal to the class number of the
order O, which in turn is equal to the following expression by [11, Corollary 7.24]

(1) h(O) = [Q(j(E′)) : Q] = hK
2

wK
f
∏
p|f

(
1−

(
∆K

p

)
1

p

)
.

Since wK = 2, then [Q(j(E′)) : Q] = hK implies E′ has CM by an order in K of conductor dividing
2. Since we have assumed E′ has CM by an order of conductor f > 1, we will suppose E′ has
CM by the order in K of conductor 2. By Equation 1, this can happen only if 2 is split in K. In
particular, since we have assumed ` is odd, then f is prime to `, and so we have a contradiction by
[4, Theorem 6.2]. �

8.2. ` inert in K.

Proposition 8.2. Let E be an OK-CM elliptic curve, where ` is an odd prime inert in K. Then
the least degree of a point on X1(`

n) associated to E′ ∈ E is

hK ·
`b3(n−1)/2c(`2 − 1)

wK
.

This is attained by E′ with CM by an order in K of conductor f = `bn/2c.

Proof. Suppose E′ has CM by the order in K of conductor f = `bn/2c. Note we can find such an
E′ in E , for, by example [36, §2.10]. Then by [5, Theorem 6.1,6.6], the point x′ ∈ X1(`

n) of least
degree associated to E′ has

deg(x′) = T (O, `n) · h(O),

where T (O, `n) is as defined in [5, Theorem 4.1]. Evaluating T (O, `n) via [5, Theorem 4.1] and
replacing h(O) with the formula in Equation 1 shows deg(x′) is as in the theorem statement.
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Now we will justify that this is the least possible degree of a point on X1(`
n) associated to any

E′ ∈ E . Suppose E′ ∈ E has CM by the order of conductor `df′ in OK where ` - f′. If d = 0, then
by [5, Theorem 4.1, Theorem 6.1] we have the least degree of a point on X1(`

n) associated to E′ is

h(O) · T (O, `n) ≥ hK ·
`2n−2(`2 − 1)

wK
≥ hK ·

`b3(n−1)/2c(`2 − 1)

wK
,

so we may henceforth assume d > 0. Then by [5, Theorem 4.1, Theorem 6.6] the least degree of a
point on X1(`

n) associated to E′ is

h(O) · T (O, `n) = hK
2

wK
f
∏
p|f

(
1−

(
∆K

p

)
1

p

)
T̃ (O, `n)

2

≥ hK
1

wK
`d−1 (`+ 1)ϕ(`n)

= hK
1

wK
`n+d−2(`2 − 1).

If d > bn/2c, then this is greater than or equal to the degree given in the theorem statement. If
d = bn/2c, then if O′ is the order of conductor `d, [5, Theorem 4.1, Theorem 6.6] show the least
degree is

h(O) · T (O, `n) ≥ h(O′) · T (O′, `n),

and the same conclusion holds.
Finally, suppose 0 < d < bn/2c. Then n > 2d and by [5, Theorem 4.1, Theorem 6.6] the least

degree is

h(O) · T (O, `n) = hK
2

wK
f
∏
p|f

(
1−

(
∆K

p

)
1

p

)
T̃ (O, `n)

2

≥ hK
1

wK
`d−1 (`+ 1) `2n−2d−1(`− 1)

= hK
1

wK
`2n−d−2(`2 − 1)

≥ hK ·
`b3(n−1)/2c(`2 − 1)

wK
. �

Corollary 8.3. Let E be an OK-CM elliptic curve, where ` is an odd prime inert in K, and let E
denote the geometric isogeny class of E. Then no minimal torsion curve exists.

Proof. Suppose for the sake of contradiction that there exists a minimal torsion curve Emin ∈ E ,
with CM by the order O of conductor f in OK . Then j(Emin) generates an extension of degree at

most hK · `
2−1
wK

, the least degree of a point on X1(`) for an elliptic curve in E . Since [Q(j(Emin)) :

Q] = h(O) and by [11, Corollary 7.24]

h(O) = hK
2

wK
f
∏
p|f

(
1−

(
∆K

p

)
1

p

)
,

we see that ord`(f) ≤ 1. Then by [5, Theorem 6.1,6.6], the point x ∈ X1(`
4) of least degree

associated to Emin has

deg(x) = T (O, `n) · h(O) ≥ hK ·
`5(`2 − 1)

wK
,
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where T (O, `n) is as defined in [5, Theorem 4.1]. But this is greater than the least degree given in
Proposition 8.2. �

8.3. ` ramified in K.

Proposition 8.4. Let E be an OK-CM elliptic curve, where ` is an odd prime ramified in K.
Then the least degree of a point on X1(`

n) associated to E′ ∈ E is

hK ·
`b3n/2c−1(`− 1)

wK
,

unless `n = 3 and ∆K = −3 in which case the least degree is 1. The least degree is attained by E′

with CM by an order in K of conductor f = `bn/2c.

Proof. Suppose E′ has CM by an order in K of conductor f = `bn/2c. Note we can find such an E′

in E , for, by example [36, §2.10]. Then by [5, Theorem 6.6] the least degree x′ ∈ X1(`
n) associated

to E′ is
deg(x′) = T (O, `n) · h(O),

where T (O, `n) is as defined in [5, Theorem 4.1]. Evaluating T (O, `n) via [5, Theorem 4.1] and
replacing h(O) with the formula in Equation 1 shows deg(x′) is as in the theorem statement.

Now we will justify that this is the least possible degree of a point on X1(`
n) associated to any

E′ ∈ E . Suppose E′ ∈ E has CM by the order of conductor `df′ in OK where ` - f′. If d = 0, then
by [5, Theorem 4.1, Theorem 6.6] we have the least degree of a point on X1(`

n) associated to E′ is

h(O) · T (O, `n) ≥ hK ·
`b3n/2c−1(`− 1)

wK
,

so we may henceforth assume d > 0.
By [5, Theorem 4.1, Theorem 6.6] the least degree of a point on X1(`

n) associated to E′ is

h(O) · T (O, `n) = hK
2

wK
f
∏
p|f

(
1−

(
∆K

p

)
1

p

)
T̃ (O, `n)

2

≥ hK
1

wK
`dϕ(`n)

= hK
1

wK
`n+d−1(`− 1).

For the sake of contradiction, suppose the least degree associated to E′ is less than value given in
the theorem statement. Then in particular

hK
1

wK
`n+d−1(`− 1) < hK ·

`b3n/2c−1(`− 1)

wK
.

This forces d < bn/2c and thus n > 2d+ 1. But then by [5, Theorem 4.1, Theorem 6.6], the least
degree of a point on X1(`

n) associated to E′ is

h(O) · T (O, `n) = hK
1

wK
f
∏
p|f

(
1−

(
∆K

p

)
1

p

)
T̃ (O, `n)

≥ hK
1

wK
`d · `2n−2d−2(`− 1)

= hK
1

wK
`2n−d−2(`− 1)

≥ hK ·
`b3n/2c−1(`− 1)

wK
. �
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Corollary 8.5. Let E be an OK-CM elliptic curve, where ` is an odd prime ramified in K, and
let E denote the geometric isogeny class of E. Then no minimal torsion curve exists.

Proof. Suppose for the sake of contradiction that there exists a minimal torsion curve Emin ∈ E , with
CM by the order O of conductor f in OK . Then j(Emin) generates an extension of degree at most
hK · `−1wK

, the least degree of a point on X1(`) for an elliptic curve in E . Since [Q(j(Emin)) : Q] = h(O)

and by [11, Corollary 7.24]

h(O) = hK
2

wK
f
∏
p|f

(
1−

(
∆K

p

)
1

p

)
,

we see that ord`(f) = 0. Then by [5, Theorem 6.1,6.6], the point x ∈ X1(`
3) of least degree

associated to Emin has

deg(x) = T (O, `n) · h(O) ≥ hK ·
`4(`− 1)

wK
,

where T (O, `n) is as defined in [5, Theorem 4.1]. But this is greater than the least degree given in
Proposition 8.2. �

9. Appendix

Let E0/Q have a rational cyclic `-isogeny C. By Theorem 3.32 and Tables 3 and 4 of [37], by
replacing E0 with E0/C if necessary, we may assume E0 has mod ` image in the following list.

Table 1

Image degrees of points on X1(`)
2B 1,2
3B.1.1 1,3
3B 1,3
5B.1.1 1,1, 10 = 5 · 2
5B.1.4 1,1, 10 = 5 · 2
5B.4.1 1,1, 10 = 5 · 2
5B 2, 10 = 5 · 2
7B.1.1 1, 1, 1, 21 = 7 · 3
7B.1.2 3, 21 = 7 · 3
7B.1.6 1, 1, 1, 21 = 7 · 3
7B.6.1 1, 1, 1, 21 = 7 · 3
7B.6.2 3, 21 = 7 · 3
7B.2.1 3, 21 = 7 · 3
7B 3, 21 = 7 · 3
11B.1.4 5, 55 = 11 · 5
11B.1.5 5, 55 = 11 · 5
11B.10.4 5, 55 = 11 · 5
13B.3.1 3, 3, 78 = 13 · 6
13B.3.4 3, 3, 78 = 13 · 6
13B.5.1 2, 2, 2, 78 = 13 · 6
13B.5.4 6, 78 = 13 · 6
13B.4.1 3, 3, 78 = 13 · 6
13B 6, 78 = 13 · 6
17B.4.2 4, 4, 136 = 17 · 8
37B.8.1 6, 6, 6, 666 = 37 · 18
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